Environmental radon control in the 700 m underground laboratory at JUNO

被引:0
|
作者
Chenyang Cui
Jie Zhao
Gaosong Li
Yongpeng Zhang
Cong Guo
Zhenning Qu
Yifang Wang
Xiaonan Li
Liangjian Wen
Miao He
Monica Sisti
机构
[1] Chinese Academy of Sciences,Institute of High Energy Physics
[2] University of Chinese Academy of Sciences,undefined
[3] INFN Milano Bicocca and Università di Milano-Bicocca,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Jiangmen Underground Neutrino Observatory is constructing the world’s largest liquid scintillator detector, with a 20 kt target mass and approximately 700 m of overburden. The total underground space of civil construction is around 300,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}, with the main hall comprising about 120,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}, making it the largest experimental hall in the world. Maintaining a low radon concentration in the underground air is crucial for both human health and the accuracy of experiments involving rare decay detection, such as neutrino and dark matter experiments. To ensure human health and the integrity of neutrino physics experiments, the nominal radon concentration in the main hall must be kept below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} with a maximum value below 400 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}. Introduction of fresh air from above ground can significantly lower radon concentration. A benchmark experiment conducted in the refuge room near the main hall revealed that the radon emanating from underground water is a significant source of radon in the underground air. The total underground ventilation rate is approximately 160,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}/h of fresh air with about 30 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}222\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{222}$$\end{document}Rn from the bottom of the vertical tunnel after the installation of powerful fans. Of this, 55,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document}/h is used for ventilation in the main hall. As a result of these measures, the radon concentration inside the main hall has decreased from 1600 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} to below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} under stable working conditions, with exceptions during rare adverse weather events or fan failures. The employed strategies to control radon concentration in the underground air are described in this paper.
引用
收藏
相关论文
共 50 条
  • [21] Estimation of radon-222 exhalation rate and control of radon-222 concentration in ventilated underground space
    Moriizumi, J
    Mori, M
    Sasao, E
    Yamazawa, H
    Iida, T
    [J]. HIGH LEVELS OF NATURAL RADIATION AND RADON AREAS: RADIATION DOSE AND HEALTH EFFECTS, 2005, 1276 : 287 - 288
  • [22] The monitoring and control of underground coal gasification in laboratory conditions
    Kostur, Karol
    Kacur, Jan
    [J]. ACTA MONTANISTICA SLOVACA, 2008, 13 (01) : 111 - 117
  • [23] Characterization and long-term performance of the Radon Trapping Facility operating at the Modane Underground Laboratory
    Hodak, R.
    Perrot, F.
    Brudanin, V
    Busto, J.
    Havelcova, M.
    Hulka, J.
    Jullian, S.
    Kochetov, O.
    Lalanne, D.
    Loaiza, P.
    Macl, J.
    Mamedov, F.
    Mizera, J.
    Noel, R.
    Piquemal, F.
    Rukhadze, E.
    Rulik, P.
    Smolek, K.
    Soule, B.
    Sucha, T.
    Svetlik, I
    Stekl, I
    Warot, G.
    Zampaolo, M.
    Zaloudkova, M.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2019, 46 (11)
  • [24] Study of the Delayed Pumping Effect in an Underground Laboratory by Correlation Analysis of Radon and Air Ion Concentrations
    Bezrukov, L. B.
    Karpikov, I. S.
    Kazalov, V. V.
    Mezhokh, A. K.
    Ingerman, S. V.
    Sinev, V. V.
    Agafonova, N. Yu.
    Dobrynina, E. A.
    Enikeev, R. I.
    Shakir'yanova, I. R.
    Yakushev, V. F.
    Eroshenko, Yu. N.
    Filimonova, N. A.
    [J]. GEOMAGNETISM AND AERONOMY, 2024, 64 (01) : 102 - 111
  • [25] Periodic Variations of the Radon Concentration Measured by the Large Volume Detector at the Gran Sasso Underground Laboratory
    N. Yu. Agafonova
    E. A. Dobrynina
    N. A. Filimonova
    I. R. Shakiryanova
    [J]. Journal of Experimental and Theoretical Physics, 2023, 137 : 333 - 341
  • [26] Study of the Delayed Pumping Effect in an Underground Laboratory by Correlation Analysis of Radon and Air Ion Concentrations
    L. B. Bezrukov
    I. S. Karpikov
    V. V. Kazalov
    A. K. Mezhokh
    S. V. Ingerman
    V. V. Sinev
    N. Yu. Agafonova
    E. A. Dobrynina
    R. I. Enikeev
    I. R. Shakir’yanova
    V. F. Yakushev
    Yu. N. Eroshenko
    N. A. Filimonova
    [J]. Geomagnetism and Aeronomy, 2024, 64 : 102 - 111
  • [27] RADON TIME-SERIES ANALYSIS IN THE UNDERGROUND LOW-LEVEL LABORATORY IN BELGRADE, SERBIA
    Udovicic, V.
    Anicin, I.
    Jokovic, D.
    Dragic, A.
    Banjanac, R.
    Grabez, B.
    Veselinovic, N.
    [J]. RADIATION PROTECTION DOSIMETRY, 2011, 145 (2-3) : 155 - 158
  • [28] Periodic Variations of the Radon Concentration Measured by the Large Volume Detector at the Gran Sasso Underground Laboratory
    Agafonova, N. Yu.
    Dobrynina, E. A.
    Filimonova, N. A.
    Shakiryanova, I. R.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2023, 137 (03) : 333 - 341
  • [29] USE OF VERMICULITE TO CONTROL DUST AND RADON DAUGHTERS IN UNDERGROUND URANIUM MINE AIR
    WASHINGT.RA
    CHI, W
    REGAN, R
    [J]. CIM BULLETIN, 1973, 66 (731): : 152 - 160
  • [30] A Central Control System for the Environmental Laboratory
    Pan, Jin
    Liu, Xingang
    [J]. 2011 NINTH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS WORKSHOPS (ISPAW), 2011, : 189 - 192