A Canonical Curve of Genus 17

被引:0
|
作者
Israel Moreno-Mejía
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
来源
Results in Mathematics | 2014年 / 66卷
关键词
14H37; 14H45; (30F10, 20H10);
D O I
暂无
中图分类号
学科分类号
摘要
We compute equations for a Hurwitz curve of genus 17 and we conclude that the canonical ideal of any Hurwitz curve of genus 14 or 17 is generated by quadrics.
引用
收藏
页码:65 / 86
页数:21
相关论文
共 50 条
  • [41] Canonical ring of a curve is Koszul: A simple proof
    Pareschi, G
    Purnaprajna, BP
    ILLINOIS JOURNAL OF MATHEMATICS, 1997, 41 (02) : 266 - 271
  • [42] The log-canonical threshold of a plane curve
    Galindo, Carlos
    Hernando, Fernando
    Monserrat, Francisco
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (03) : 513 - 535
  • [43] AN INTERSECTION OF QUADRICKS MEETING A CANONICAL CURVE AND CHORD
    KATSARKOV, LV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (04): : 24 - 28
  • [44] QUADRICS OF RANK 4 IN THE IDEAL OF A CANONICAL CURVE
    GREEN, ML
    INVENTIONES MATHEMATICAE, 1984, 75 (01) : 85 - 104
  • [45] ON THE GAUSSIAN MAP FOR CANONICAL CURVES OF LOW GENUS
    CILIBERTO, C
    MIRANDA, R
    DUKE MATHEMATICAL JOURNAL, 1990, 61 (02) : 417 - 443
  • [46] Canonical heights on genus-2 Jacobians
    Mueller, Jan Steffen
    Stoll, Michael
    ALGEBRA & NUMBER THEORY, 2016, 10 (10) : 2153 - 2234
  • [47] Canonical differential equations beyond genus one
    Duhr, Claude
    Porkert, Franziska
    Stawinski, Sven F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [48] CHOW STABILITY OF CANONICAL GENUS 4 CURVES
    Kim, Hosung
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (03) : 1029 - 1040
  • [49] The Relative Canonical Algebra for Genus 4 Fibrations
    Cai Jinxing Department of Mathematics East China Normal University Shanghai
    Acta Mathematica Sinica,English Series, 1995, (01) : 44 - 52
  • [50] Regular canonical surfaces of genus three and four
    Maxwell, EA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 : 306 - 310