Optimal allocation procedure in ranked set sampling for unimodal and multi-modal distributions

被引:0
|
作者
O¨mer O¨ztu¨rk
Douglas A. Wolfe
机构
[1] Ohio State University,Department of Statistics
[2] Ohio State University,Department of Statistics
关键词
design; unequal allocation; pitman efficiency; nonparametric testing; mode; information;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a ranked set sample allocation procedure that is optimal for a number of nonparametric test procedures. We define a function that measures the amount of information provided by each observation given the actual joint ranking of all the units in a set. The optimal ranked set sample allocates order statistics by maximizing this information function. This paper shows that the optimal allocation of order statistics in a ranked set sample is determined by the location of the mode(s) of the underlying distribution. For unimodal, symmetric distributions, optimal allocation always quantifies the middle observation(s). If the underlying distribution with cdf F is a multi-modal distribution with modes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R, \ldots ,R_k $$ \end{document}, then the optimal allocation procedure quantifies observations at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$mF(R_1 ), \ldots ,mF(R_1 )$$ \end{document} in a set of size m. We provide similar results for unimodal, asymmetric distributions. We also propose a new sign test which considers the relative positions of the quantified observations from the same cycle in a ranked set sample. The proposed sign test provides improvement in the Pitman efficiency over the ranked set sample sign test of Hettmansperger (1995). It is shown that the information optimal allocation procedure induced by Pitman efficiency is equivalent to the optimal allocation procedure induced by the information criteria. We show that the finite sample distribution of the proposed test based on this optimal design is binomial.
引用
收藏
页码:343 / 356
页数:13
相关论文
共 50 条
  • [31] Optimal membership functions for multi-modal control
    Mehta, Tejas R.
    Egerstedt, Magnus
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 2658 - +
  • [32] Probability distribution based recombination operator to solve unimodal and multi-modal problems
    Raghuwanshi, M.
    Kakde, O.
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2006, 10 (03) : 247 - 255
  • [33] Task allocation in robot systems with multi-modal capabilities
    Hojda, Maciej
    IFAC PAPERSONLINE, 2015, 48 (03): : 2109 - 2114
  • [34] EXTREME VALUES CALCULATION OF MULTI-MODAL PEAK DISTRIBUTIONS
    Mauro, F.
    Nabergoj, R.
    ENGINEERING MECHANICS 2016, 2016, : 378 - 381
  • [35] Hierarchical multi-modal video summarization with dynamic sampling
    Yu, Lingjian
    Zhao, Xing
    Xie, Liang
    Liang, Haoran
    Liang, Ronghua
    IET IMAGE PROCESSING, 2024, 18 (14) : 4577 - 4588
  • [36] Optimal ranked set sampling estimation based on medians from multiple set sizes
    Gemayel, Nader M.
    Stasny, Elizabeth A.
    Wolfe, Douglas A.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (04) : 517 - 527
  • [37] Quantile estimation using near optimal unbalanced ranked set sampling
    Nautiyal, Raman
    Tiwari, Neeraj
    Chandra, Girish
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2021, 28 (06) : 643 - 654
  • [38] The optimal ranked-set sampling scheme for inference on population quantiles
    Chen, ZH
    STATISTICA SINICA, 2001, 11 (01) : 23 - 37
  • [39] An Algorithm for Generating a Diverse Set of Multi-Modal Journeys
    Mosquera, Federico
    Smet, Pieter
    Vanden Berghe, Greet
    ALGORITHMS, 2022, 15 (11)
  • [40] Multi-modal image set registration and atlas formation
    Lorenzen, Peter
    Prastawa, Marcel
    Davis, Brad
    Gerig, Guido
    Bullitt, Elizabeth
    Joshi, Sarang
    MEDICAL IMAGE ANALYSIS, 2006, 10 (03) : 440 - 451