On Minimum Identifying Codes in Some Cartesian Product Graphs

被引:0
|
作者
D. F. Rall
K. Wash
机构
[1] Furman University,Department of Mathematics
[2] Trinity College,undefined
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Identifying code; Dominating set; Cartesian product; Prism; Grid graphs; 05C69; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code, or ID code, in a graph G is called the ID code number of G and is denoted γID(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G)$$\end{document}. In this paper, we give upper and lower bounds for the ID code number of the prism of a graph, or G□K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\Box K_2$$\end{document}. In particular, we show that γID(G□K2)≥γID(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G \Box K_2) \ge \gamma ^\mathrm{ID}(G)$$\end{document} and we show that this bound is sharp. We also give upper and lower bounds for the ID code number of grid graphs and a general upper bound for γID(G□K2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G\Box K_2)$$\end{document}.
引用
收藏
页码:1037 / 1053
页数:16
相关论文
共 50 条
  • [21] A comparison of approaches for finding minimum identifying codes on graphs
    Victoria Horan
    Steve Adachi
    Stanley Bak
    [J]. Quantum Information Processing, 2016, 15 : 1827 - 1848
  • [22] A comparison of approaches for finding minimum identifying codes on graphs
    Horan, Victoria
    Adachi, Steve
    Bak, Stanley
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (05) : 1827 - 1848
  • [23] Computing some role assignments of Cartesian product of graphs
    Castonguay, Diane
    Dias, Elisangela Silva
    Mesquita, Fernanda Neiva
    Nascimento, Julliano Rosa
    [J]. RAIRO-OPERATIONS RESEARCH, 2022, 56 (01) : 115 - 121
  • [24] Zero forcing number for Cartesian product of some graphs
    Montazeri, Zeinab
    Soltankhah, Nasrin
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (04) : 635 - 646
  • [25] ON THE TOTAL IRREGULARITY STRENGTH OF SOME CARTESIAN PRODUCT GRAPHS
    Ramdani, R.
    Salman, A. N. M.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (02) : 199 - 209
  • [26] Indicated coloring of Cartesian product of some families of graphs
    Francis, P.
    Raj, S. Francis
    [J]. ARS COMBINATORIA, 2021, 154 : 143 - 157
  • [27] A note on δ(k)-colouring of the Cartesian product of some graphs
    Ellumkalayil, Merlin Thomas
    Naduvath, Sudev
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (01) : 113 - 120
  • [28] The induced path number of the cartesian product of some graphs
    Broere, Izak
    Jonck, Elizabeth
    Domke, Gayla S.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 36 : 3 - 12
  • [29] Minimum k-Path Vertex Cover in Cartesian Product Graphs
    Huiling YIN
    Binbin HAO
    Xiaoyan SU
    Jingrong CHEN
    [J]. Journal of Mathematical Research with Applications, 2021, 41 (04) : 340 - 348
  • [30] Minimum sizes of identifying codes in graphs differing by one edge
    Charon, Irene
    Honkala, Iiro
    Hudry, Olivier
    Lobstein, Antoine
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2014, 6 (02): : 157 - 170