On Minimum Identifying Codes in Some Cartesian Product Graphs

被引:0
|
作者
D. F. Rall
K. Wash
机构
[1] Furman University,Department of Mathematics
[2] Trinity College,undefined
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Identifying code; Dominating set; Cartesian product; Prism; Grid graphs; 05C69; 05C76;
D O I
暂无
中图分类号
学科分类号
摘要
An identifying code in a graph is a dominating set that also has the property that the closed neighborhood of each vertex in the graph has a distinct intersection with the set. The minimum cardinality of an identifying code, or ID code, in a graph G is called the ID code number of G and is denoted γID(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G)$$\end{document}. In this paper, we give upper and lower bounds for the ID code number of the prism of a graph, or G□K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\Box K_2$$\end{document}. In particular, we show that γID(G□K2)≥γID(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G \Box K_2) \ge \gamma ^\mathrm{ID}(G)$$\end{document} and we show that this bound is sharp. We also give upper and lower bounds for the ID code number of grid graphs and a general upper bound for γID(G□K2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^\mathrm{ID}(G\Box K_2)$$\end{document}.
引用
收藏
页码:1037 / 1053
页数:16
相关论文
共 50 条
  • [1] On Minimum Identifying Codes in Some Cartesian Product Graphs
    Rall, D. F.
    Wash, K.
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (04) : 1037 - 1053
  • [2] Minimum identifying codes in some graphs differing by matchings
    Nikandish, R.
    Nasab, O. Khani
    Dodonge, E.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (03)
  • [3] ON UNIQUE MINIMUM DOMINATING SETS IN SOME CARTESIAN PRODUCT GRAPHS
    Hedetniemi, Jason T.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 615 - 628
  • [4] Minimum dominating walks in Cartesian product graphs
    Hartnell, BL
    Whitehead, CA
    [J]. UTILITAS MATHEMATICA, 2004, 65 : 73 - 82
  • [5] THE THICKNESS OF SOME CARTESIAN PRODUCT GRAPHS
    Guo, Xia
    Yang, Yan
    [J]. ARS COMBINATORIA, 2019, 147 : 97 - 107
  • [6] Identifying codes of lexicographic product of graphs
    Feng, Min
    Xu, Min
    Wang, Kaishun
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [7] On locally identifying coloring of Cartesian product and tensor product of graphs
    Bhyravarapu, Sriram
    Kumari, Swati
    Reddy, I. Vinod
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 358 : 429 - 447
  • [8] Identifying codes of corona product graphs
    Feng, Min
    Wang, Kaishun
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 169 : 88 - 96
  • [9] On locally identifying coloring of Cartesian product and tensor product of graphs
    The Institute of Mathematical Sciences, HBNI, Chennai, India
    不详
    [J]. Discrete Appl Math, (429-447):
  • [10] GHWs of Codes Arising from Cartesian Product of Graphs
    Hamid Reza Maimani
    Maryam Mohammadpour Sabet
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1689 - 1709