A working likelihood approach to support vector regression with a data-driven insensitivity parameter

被引:0
|
作者
Jinran Wu
You-Gan Wang
机构
[1] Queensland University of Technology,
[2] Australian Catholic University,undefined
关键词
Approximate loss function; Parameter estimation; Prediction; Working likelihood;
D O I
暂无
中图分类号
学科分类号
摘要
The insensitivity parameter in support vector regression determines the set of support vectors that greatly impacts the prediction. A data-driven approach is proposed to determine an approximate value for this insensitivity parameter by minimizing a generalized loss function originating from the likelihood principle. This data-driven support vector regression also statistically standardizes samples using the scale of noises different from conventional response scaling method. Statistical standardization together with probabilistic regularization based on a working likelihood function produces data-dependent values for the hyperparameters including the insensitivity parameter. The exact asymptotical solutions are provided when the noises are normally distributed. Nonlinear and linear numerical simulations with three types of noises (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-Laplacian distribution, normal distribution, and uniform distribution), and in addition, five real benchmark data sets, are used to test the capacity of the proposed method. Based on all the simulations and the five case studies, the proposed support vector regression using a working likelihood, data-driven insensitivity parameter is superior and has lower computational costs.
引用
收藏
页码:929 / 945
页数:16
相关论文
共 50 条
  • [41] Data-driven resistant kernel regression
    Zhou, Jianhua
    Parmeter, Christopher F.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2025, 37 (01) : 33 - 59
  • [42] Data-driven slicing for dimension reduction in regressions: A likelihood-ratio approach
    Peirong Xu
    Tao Wang
    Lixing Zhu
    Science China(Mathematics), 2024, 67 (03) : 647 - 664
  • [43] A data-driven approach to detecting change points in linear regression models
    Lyubchich, Vyacheslav
    Lebedeva, Tatiana, V
    Testa, Jeremy M.
    ENVIRONMETRICS, 2020, 31 (01)
  • [44] Data-Driven Aggregate Thermal Dynamic Model for Buildings: A Regression Approach
    Lu, Shuai
    Gu, Wei
    Ding, Shixing
    Yao, Shuai
    Lu, Hai
    Yuan, Xiaodong
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (01) : 227 - 242
  • [45] A DATA-DRIVEN APPROACH FOR ACOUSTIC PARAMETER SIMILARITY ESTIMATION OF SPEECH RECORDING
    Papa, Mattia
    Borrelli, Clara
    Bestagini, Paolo
    Antonacci, Fabio
    Sarti, Augusto
    Tubaro, Stefano
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 596 - 600
  • [46] Data-Driven Approach for Parameter Estimation and Control of an Autonomous Underwater Vehicle
    Rasul, Tabassum
    Mukherjee, Koena
    JOURNAL OF ETA MARITIME SCIENCE, 2024, 12 (02) : 144 - 155
  • [47] Data-driven alarm parameter optimization
    Eylen, Tayfun
    Eren, P. Erhan
    Kocyigit, Altan
    COMPUTERS & CHEMICAL ENGINEERING, 2025, 196
  • [48] A robust omnichannel pricing and ordering optimization approach with return policies based on data-driven support vector clustering
    Qiu, Ruozhen
    Ma, Lin
    Sun, Minghe
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (03) : 1337 - 1354
  • [49] Data-Driven Adaptive Critic Approach for Nonlinear Optimal Control via Least Squares Support Vector Machine
    Sun, Jingliang
    Liu, Chunsheng
    Liu, Nian
    ASIAN JOURNAL OF CONTROL, 2018, 20 (01) : 104 - 114
  • [50] Data Driven Building Electricity Consumption Model Using Support Vector Regression
    Soelami, F. X. Nugroho
    Utama, Putu Handre Kertha
    Haq, Irsyad Nashirul
    Pradipta, Justin
    Leksono, Edi
    Wasesa, Meditya
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2021, 53 (03):