A working likelihood approach to support vector regression with a data-driven insensitivity parameter

被引:0
|
作者
Jinran Wu
You-Gan Wang
机构
[1] Queensland University of Technology,
[2] Australian Catholic University,undefined
关键词
Approximate loss function; Parameter estimation; Prediction; Working likelihood;
D O I
暂无
中图分类号
学科分类号
摘要
The insensitivity parameter in support vector regression determines the set of support vectors that greatly impacts the prediction. A data-driven approach is proposed to determine an approximate value for this insensitivity parameter by minimizing a generalized loss function originating from the likelihood principle. This data-driven support vector regression also statistically standardizes samples using the scale of noises different from conventional response scaling method. Statistical standardization together with probabilistic regularization based on a working likelihood function produces data-dependent values for the hyperparameters including the insensitivity parameter. The exact asymptotical solutions are provided when the noises are normally distributed. Nonlinear and linear numerical simulations with three types of noises (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-Laplacian distribution, normal distribution, and uniform distribution), and in addition, five real benchmark data sets, are used to test the capacity of the proposed method. Based on all the simulations and the five case studies, the proposed support vector regression using a working likelihood, data-driven insensitivity parameter is superior and has lower computational costs.
引用
收藏
页码:929 / 945
页数:16
相关论文
共 50 条
  • [1] A working likelihood approach to support vector regression with a data-driven insensitivity parameter
    Wu, Jinran
    Wang, You-Gan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 929 - 945
  • [2] A Data-Driven Approach to Spacecraft Attitude Control Using Support Vector Regression (SVR)
    Mahayana, Dimitri
    IEEE ACCESS, 2024, 12 : 177896 - 177910
  • [3] Urban Human Mobility Prediction Using Support Vector Regression: A Classical Data-Driven Approach
    Imai, Yuki
    Tokumoto, Takuya
    Koyama, Kohei
    Ochi, Tomoko
    Imai, Shogo
    Mori, Tomoyuki
    Nakao, Tomohiro
    Maruyama, Kenta
    2nd ACM SIGSPATIAL International Workshop on the Human Mobility Prediction Challenge, HuMob-Challenge 2024, : 37 - 41
  • [4] An Ensemble of Modified Support Vector Regression Models for Data-Driven Prognostics
    Mathew, Josey
    Vadakkepat, Prahlad
    Luo, Ming
    Pang, Chee Khiang
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 885 - 890
  • [5] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    ENTROPY, 2019, 21 (06)
  • [6] An Support Vector Regression-Based Data-Driven Leaflet Modeling Approach for Personalized Aortic Valve Prosthesis Development
    Hagenah, Jannis
    Evers, Tizian
    Scharfschwerdt, Michael
    Schweikard, Achim
    Ernst, Floris
    2018 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2018, 45
  • [7] Parameter adaptive support vector regression for big data
    Cao W.
    Ni J.
    Jiang B.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (02): : 511 - 521
  • [8] Inverse regression for ridge recovery: a data-driven approach for parameter reduction in computer experiments
    Glaws, Andrew T.
    Constantine, Paul G.
    Cook, R. Dennis
    STATISTICS AND COMPUTING, 2020, 30 (02) : 237 - 253
  • [9] Inverse regression for ridge recovery: a data-driven approach for parameter reduction in computer experiments
    Andrew Glaws
    Paul G. Constantine
    R. Dennis Cook
    Statistics and Computing, 2020, 30 : 237 - 253
  • [10] Data-driven modeling and optimization for cavity filters using linear programming support vector regression
    Zhou, Jinzhu
    Duan, Baoyan
    Huang, Jin
    Cao, Hongjun
    NEURAL COMPUTING & APPLICATIONS, 2014, 24 (7-8): : 1771 - 1783