On Polynomial Approximation in Anisotropic Weighted Spaces of Holomorphic Functions in a Polydisc

被引:0
|
作者
F. A. Shamoyan
机构
[1] Bryansk State University,Department of Mathematical Analysis
来源
关键词
Polydisc; Analytic function; Anisotropic weighted space; Polynomial approximation; Weak invertibility; Primary 32A50; Secondary 47B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain a necessary and sufficient condition on the weighted vector-valued function φ=(φ1,…,φn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi =(\varphi _1, \ldots , \varphi _n)$$\end{document} for which each function analytic in the unit polydisc that has no zero and belongs in Ap(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p(\varphi )$$\end{document} is weakly invertible in the space Aq(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^q(\varphi )$$\end{document} for any 0<q<p<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<p<+\infty $$\end{document}.
引用
收藏
页码:1135 / 1156
页数:21
相关论文
共 50 条
  • [31] Isometries between spaces of weighted holomorphic functions
    Boyd, Christopher
    Rueda, Pilar
    [J]. STUDIA MATHEMATICA, 2009, 190 (03) : 203 - 231
  • [32] ON WEIGHTED SPACES OF HARMONIC AND HOLOMORPHIC-FUNCTIONS
    LUSKY, W
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 309 - 320
  • [33] WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS ON THE UPPER HALFPLANE
    Ardalani, Mohammad Ali
    Lusky, Wolfgang
    [J]. MATHEMATICA SCANDINAVICA, 2012, 111 (02) : 244 - 260
  • [34] A note on weighted Banach spaces of holomorphic functions
    J. Bonet
    E. Wolf
    [J]. Archiv der Mathematik, 2003, 81 : 650 - 654
  • [35] On weighted spaces of holomorphic functions of several variables
    Wolfgang Lusky
    Jari Taskinen
    [J]. Israel Journal of Mathematics, 2010, 176 : 381 - 399
  • [36] Schauder decompositions of weighted spaces of holomorphic functions
    García, D
    Maestre, M
    Rueda, P
    [J]. FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 103 - 108
  • [37] TOEPLITZ OPERATORS ON WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS
    Harutyunyan, Anahit
    Lusky, Wolfgang
    [J]. MATHEMATICA SCANDINAVICA, 2008, 103 (01) : 40 - 52
  • [38] Diagonal Mapping in Anisotropic Spaces of Analytic Functions in Polydisc with Mixed Norm
    Shamoyan, F. A.
    Povprits, E. V.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1383 - 1403
  • [39] Preduals of spaces of holomorphic functions and the approximation property
    Caraballo, Bias M.
    Favaro, Vinicius V.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 957 - 966
  • [40] Diagonal Mapping in Anisotropic Spaces of Analytic Functions in Polydisc with Mixed Norm
    F. A. Shamoyan
    E. V. Povprits
    [J]. Complex Analysis and Operator Theory, 2014, 8 : 1383 - 1403