On Polynomial Approximation in Anisotropic Weighted Spaces of Holomorphic Functions in a Polydisc

被引:0
|
作者
F. A. Shamoyan
机构
[1] Bryansk State University,Department of Mathematical Analysis
来源
关键词
Polydisc; Analytic function; Anisotropic weighted space; Polynomial approximation; Weak invertibility; Primary 32A50; Secondary 47B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain a necessary and sufficient condition on the weighted vector-valued function φ=(φ1,…,φn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi =(\varphi _1, \ldots , \varphi _n)$$\end{document} for which each function analytic in the unit polydisc that has no zero and belongs in Ap(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^p(\varphi )$$\end{document} is weakly invertible in the space Aq(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^q(\varphi )$$\end{document} for any 0<q<p<+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<p<+\infty $$\end{document}.
引用
收藏
页码:1135 / 1156
页数:21
相关论文
共 50 条