On the Perfect Matchings of Near Regular Graphs

被引:0
|
作者
Xinmin Hou
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Perfect matching; Regular graph; Near regular graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let k, h be positive integers with k ≤ h. A graph G is called a [k, h]-graph if k ≤ d(v) ≤ h for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document}. Let G be a [k, h]-graph of order 2n such that k ≥ n. Hilton (J. Graph Theory 9:193–196, 1985) proved that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor k/3\rfloor}$$\end{document} disjoint perfect matchings if h = k. Hilton’s result had been improved by Zhang and Zhu (J. Combin. Theory, Series B, 56:74–89, 1992), they proved that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor k/2\rfloor}$$\end{document} disjoint perfect matchings if k = h. In this paper, we improve Hilton’s result from another direction, we prove that Hilton’s result is true for [k, k + 1]-graphs. Specifically, we prove that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor\frac{n}3\rfloor+1+(k-n)}$$\end{document} disjoint perfect matchings if h = k + 1.
引用
收藏
页码:865 / 869
页数:4
相关论文
共 50 条
  • [31] PERFECT MATCHINGS IN O(n log n) TIME IN REGULAR BIPARTITE GRAPHS
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    SIAM JOURNAL ON COMPUTING, 2013, 42 (03) : 1392 - 1404
  • [32] Perfect Matchings in O(n log n) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 39 - 46
  • [33] Perfect matchings and derangements on graphs
    Bucic, Matija
    Devlin, Pat
    Hendon, Mo
    Horne, Dru
    Lund, Ben
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 340 - 354
  • [34] Toughness and perfect matchings in graphs
    Liu, GZ
    Yu, QL
    ARS COMBINATORIA, 1998, 48 : 129 - 134
  • [35] Perfect Matchings in O (n1.5) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    COMBINATORICA, 2019, 39 (02) : 323 - 354
  • [36] Spectral Conditions for Connectivity, Toughness and perfect k-Matchings of Regular Graphs
    Wenqian Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [37] Random Matchings in Regular Graphs
    Jeff Kahn
    Jeong Han Kim
    Combinatorica, 1998, 18 : 201 - 226
  • [38] Maximum matchings in regular graphs
    Ye, Dong
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1195 - 1198
  • [39] The enumeration of near-perfect matchings of factor-critical graphs
    Liu, Y
    Hao, JX
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 259 - 266
  • [40] Random matchings in regular graphs
    Kahn, J
    Kim, JH
    COMBINATORICA, 1998, 18 (02) : 201 - 226