On the Perfect Matchings of Near Regular Graphs

被引:0
|
作者
Xinmin Hou
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Perfect matching; Regular graph; Near regular graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let k, h be positive integers with k ≤ h. A graph G is called a [k, h]-graph if k ≤ d(v) ≤ h for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v \in V(G)}$$\end{document}. Let G be a [k, h]-graph of order 2n such that k ≥ n. Hilton (J. Graph Theory 9:193–196, 1985) proved that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor k/3\rfloor}$$\end{document} disjoint perfect matchings if h = k. Hilton’s result had been improved by Zhang and Zhu (J. Combin. Theory, Series B, 56:74–89, 1992), they proved that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor k/2\rfloor}$$\end{document} disjoint perfect matchings if k = h. In this paper, we improve Hilton’s result from another direction, we prove that Hilton’s result is true for [k, k + 1]-graphs. Specifically, we prove that G contains at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor\frac{n}3\rfloor+1+(k-n)}$$\end{document} disjoint perfect matchings if h = k + 1.
引用
收藏
页码:865 / 869
页数:4
相关论文
共 50 条
  • [1] On the Perfect Matchings of Near Regular Graphs
    Hou, Xinmin
    GRAPHS AND COMBINATORICS, 2011, 27 (06) : 865 - 869
  • [2] Perfect matchings in regular bipartite graphs
    Katerinis, P
    Tsikopoulos, N
    GRAPHS AND COMBINATORICS, 1996, 12 (04) : 327 - 331
  • [3] Random perfect matchings in regular graphs
    Granet, Bertille
    Joos, Felix
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (01) : 3 - 14
  • [4] Perfect Matchings of Regular Bipartite Graphs
    Lukot'ka, Robert
    Rollova, Edita
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 525 - 532
  • [5] Perfect matchings in random subgraphs of regular bipartite graphs
    Glebov, Roman
    Luria, Zur
    Simkin, Michael
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 208 - 231
  • [6] Perfect matchings in highly cyclically connected regular graphs
    Lukot'ka, Robert
    Rollova, Edita
    JOURNAL OF GRAPH THEORY, 2022, 100 (01) : 28 - 49
  • [7] On the order of almost regular bipartite graphs without perfect matchings
    Volkmann, Lutz
    Zingsem, Axel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 165 - 170
  • [8] Perfect matchings in ε-regular graphs and the blow-up lemma
    Rödl, V
    Rucinski, A
    COMBINATORICA, 1999, 19 (03) : 437 - 452
  • [9] Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma
    Vojtech Rödl
    Andrzej Ruciński
    Combinatorica, 1999, 19 : 437 - 452
  • [10] The number of perfect matchings, and the nesting properties, of random regular graphs
    Gao, Pu
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (04) : 935 - 955