Isoperimetric problem;
Log-convex density;
Generalised mean curvature;
49Q20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Given a positive lower semi-continuous density f on R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^2$$\end{document} the weighted volume Vf:=fL2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_f:=f\mathscr {L}^2$$\end{document} is defined on the L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr {L}^2$$\end{document}-measurable sets in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^2$$\end{document}. The f-weighted perimeter of a set of finite perimeter E in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^2$$\end{document} is written Pf(E)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_f(E)$$\end{document}. We study minimisers for the weighted isoperimetric problem If(v):=inf{Pf(E):Eis a set of finite perimeter inR2andVf(E)=v}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} I_f(v):=\inf \Big \{ P_f(E):E\text { is a set of finite perimeter in }\mathbb {R}^2\text { and }V_f(E)=v\Big \} \end{aligned}$$\end{document}for v>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v>0$$\end{document}. Suppose f takes the form f:R2→(0,+∞);x↦eh(|x|)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:\mathbb {R}^2\rightarrow (0,+\infty );x\mapsto e^{h(|x|)}$$\end{document} where h:[0,+∞)→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h:[0,+\infty )\rightarrow \mathbb {R}$$\end{document} is a non-decreasing convex function. Let v>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v>0$$\end{document} and B a centred ball in R2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^2$$\end{document} with Vf(B)=v\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_f(B)=v$$\end{document}. We show that B is a minimiser for the above variational problem and obtain a uniqueness result.
机构:
Univ Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, ArgentinaUniv Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
Conde, Cristian
Minculete, Nicusor
论文数: 0引用数: 0
h-index: 0
机构:
Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500091, RomaniaUniv Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
Minculete, Nicusor
论文数: 引用数:
h-index:
机构:
Moradi, Hamid Reza
Sababheh, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Princess Sumaya Univ Technol, Amman 11941, JordanUniv Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, DF, Argentina
机构:
Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, IsraelTel Aviv Univ, Sch Math, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
Milman, Emanuel
Sodin, Sasha
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Sch Math, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel