An isoperimetric inequality in the plane with a log-convex density

被引:0
|
作者
I. McGillivray
机构
[1] University of Bristol,School of Mathematics
来源
Ricerche di Matematica | 2018年 / 67卷
关键词
Isoperimetric problem; Log-convex density; Generalised mean curvature; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive lower semi-continuous density f on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} the weighted volume Vf:=fL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_f:=f\mathscr {L}^2$$\end{document} is defined on the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {L}^2$$\end{document}-measurable sets in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}. The f-weighted perimeter of a set of finite perimeter E in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} is written Pf(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_f(E)$$\end{document}. We study minimisers for the weighted isoperimetric problem If(v):=inf{Pf(E):Eis a set of finite perimeter inR2andVf(E)=v}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} I_f(v):=\inf \Big \{ P_f(E):E\text { is a set of finite perimeter in }\mathbb {R}^2\text { and }V_f(E)=v\Big \} \end{aligned}$$\end{document}for v>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v>0$$\end{document}. Suppose f takes the form f:R2→(0,+∞);x↦eh(|x|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {R}^2\rightarrow (0,+\infty );x\mapsto e^{h(|x|)}$$\end{document} where h:[0,+∞)→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:[0,+\infty )\rightarrow \mathbb {R}$$\end{document} is a non-decreasing convex function. Let v>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v>0$$\end{document} and B a centred ball in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} with Vf(B)=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_f(B)=v$$\end{document}. We show that B is a minimiser for the above variational problem and obtain a uniqueness result.
引用
收藏
页码:817 / 874
页数:57
相关论文
共 50 条
  • [21] Log-convex and Stieltjes moment sequences
    Wang, Yi
    Zhu, Bao-Xuan
    ADVANCES IN APPLIED MATHEMATICS, 2016, 81 : 115 - 127
  • [22] The Choquet integral of log-convex functions
    Wang, Hongxia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [23] Norm Inequalities via Convex and Log-Convex Functions
    Conde, Cristian
    Minculete, Nicusor
    Moradi, Hamid Reza
    Sababheh, Mohammad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [24] Nash bargaining for log-convex problems
    Cheng-Zhong Qin
    Shuzhong Shi
    Guofu Tan
    Economic Theory, 2015, 58 : 413 - 440
  • [25] Norm Inequalities via Convex and Log-Convex Functions
    Cristian Conde
    Nicuşor Minculete
    Hamid Reza Moradi
    Mohammad Sababheh
    Mediterranean Journal of Mathematics, 2023, 20
  • [26] ISOPERIMETRIC INEQUALITY FOR PLANE
    TREIBER, D
    ARCHIV DER MATHEMATIK, 1974, 25 (01) : 79 - 82
  • [27] Some applications of the Hermite-Hadamard inequality for log-convex functions in quantum divergences
    Hassanzad, Fatemeh
    Mehri-Dehnavi, Hossien
    Agahi, Hamzeh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) : 4899 - 4906
  • [28] An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies
    Milman, Emanuel
    Sodin, Sasha
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) : 1235 - 1268
  • [29] Log-convex sequences and nonzero proximate orders
    Jimenez-Garrido, Javier
    Sanz, Javier
    Schindl, Gerhard
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1572 - 1599
  • [30] The Sugeno fuzzy integral of log-convex functions
    Sadegh Abbaszadeh
    Madjid Eshaghi
    Manuel de la Sen
    Journal of Inequalities and Applications, 2015