De novo active sites for resurrected Precambrian enzymes

被引:0
|
作者
Valeria A. Risso
Sergio Martinez-Rodriguez
Adela M. Candel
Dennis M. Krüger
David Pantoja-Uceda
Mariano Ortega-Muñoz
Francisco Santoyo-Gonzalez
Eric A. Gaucher
Shina C. L. Kamerlin
Marta Bruix
Jose A. Gavira
Jose M. Sanchez-Ruiz
机构
[1] Facultad de Ciencias University of Granada,Departamento de Quimica Fisica
[2] Science for Life Laboratory,Department of Cell and Molecular Biology
[3] Uppsala University,Departamento de Quimica Fisica Biologica
[4] Instituto de Quimica Fisica Rocasolano,Departamento de Quimica Organica
[5] CSIC,undefined
[6] Facultad de Ciencias University of Granada,undefined
[7] School of Biology,undefined
[8] School of Chemistry and Biochemistry,undefined
[9] Parker H. Petit Institute for Bioengineering and Biosciences,undefined
[10] Georgia Institute of Technology,undefined
[11] Laboratorio de Estudios Cristalograficos,undefined
[12] Instituto Andaluz de Ciencias de la Tierra,undefined
[13] CSIC-University of Granada Avenida de la Palmeras 4,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Protein engineering studies often suggest the emergence of completely new enzyme functionalities to be highly improbable. However, enzymes likely catalysed many different reactions already in the last universal common ancestor. Mechanisms for the emergence of completely new active sites must therefore either plausibly exist or at least have existed at the primordial protein stage. Here, we use resurrected Precambrian proteins as scaffolds for protein engineering and demonstrate that a new active site can be generated through a single hydrophobic-to-ionizable amino acid replacement that generates a partially buried group with perturbed physico-chemical properties. We provide experimental and computational evidence that conformational flexibility can assist the emergence and subsequent evolution of new active sites by improving substrate and transition-state binding, through the sampling of many potentially productive conformations. Our results suggest a mechanism for the emergence of primordial enzymes and highlight the potential of ancestral reconstruction as a tool for protein engineering.
引用
收藏
相关论文
共 50 条
  • [41] Ionizable side chains at catalytic active sites of enzymes
    Jimenez-Morales, David
    Liang, Jie
    Eisenberg, Bob
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2012, 41 (05): : 449 - 460
  • [42] Hidden allosteric sites and De-Novo drug design
    Rehman, Ashfaq Ur
    Lu, Shaoyong
    Khan, Abdul Aziz
    Khurshid, Beenish
    Rasheed, Salman
    Wadood, Abdul
    Zhang, Jian
    EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (03) : 283 - 295
  • [43] CATALYTIC ACTIVITY OF ENZYMES ALTERED AT THEIR ACTIVE-SITES
    KAISER, ET
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1988, 27 (07): : 913 - 922
  • [44] Locating the active sites of enzymes using mechanical properties
    Sacquin-Mora, Sophie
    Laforet, Emilie
    Lavery, Richard
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 67 (02) : 350 - 359
  • [45] PROTEIN DYNAMICS - APPLICATION TO ACTIVE-SITES OF ENZYMES
    KARPLUS, M
    BROOKS, CL
    BRUNGER, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1985, 189 (APR-): : 6 - MEDI
  • [46] Biochemistry - How active sites communicate in thiamine enzymes
    Jordan, F
    SCIENCE, 2004, 306 (5697) : 818 - 820
  • [47] Ionizable side chains at catalytic active sites of enzymes
    David Jimenez-Morales
    Jie Liang
    Bob Eisenberg
    European Biophysics Journal, 2012, 41 : 449 - 460
  • [48] Metallo-oxidase Enzymes: Design of their Active Sites
    Xiao, Zhiguang
    Wedd, Anthony G.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2011, 64 (03) : 231 - 238
  • [49] PROTEIN DYNAMICS - APPLICATION TO ACTIVE-SITES OF ENZYMES
    KARPLUS, M
    BRUNGER, A
    BROOKS, C
    BIOPHYSICAL JOURNAL, 1985, 47 (02) : A35 - A35
  • [50] Reconstructing de novo silencing of an active plant retrotransposon
    Mari-Ordonez, Arturo
    Marchais, Antonin
    Etcheverry, Mathilde
    Martin, Antoine
    Colot, Vincent
    Voinnet, Olivier
    NATURE GENETICS, 2013, 45 (09) : 1029 - +