The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

被引:0
|
作者
Howard Weiss
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Journal of Statistical Physics | 1999年 / 95卷
关键词
Axiom-A surface diffeomorphism; conformal repeller; dimension spectrum; expanding map; Hausdorff dimension; Lyapunov exponent; Lyapunov spectrum; multrifractal analysis; pointwise dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a detailed description of the decomposition of a conformal repeller by the level sets of the Lyapunov exponent, along with a similar result for Axiom-A surface diffeomorphisms.
引用
收藏
页码:615 / 632
页数:17
相关论文
共 50 条
  • [21] EXAMPLES OF COARSE EXPANDING CONFORMAL MAPS
    Haissinsky, Peter
    Pilgrim, Kevin M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (07) : 2403 - 2416
  • [22] On the Lyapunov spectrum for rational maps
    Gelfert, Katrin
    Przytycki, Feliks
    Rams, Michal
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 965 - 1004
  • [23] On the Lyapunov spectrum for rational maps
    Katrin Gelfert
    Feliks Przytycki
    Michał Rams
    Mathematische Annalen, 2010, 348 : 965 - 1004
  • [24] Lyapunov spectrum for multimodal maps
    Gelfert, Katrin
    Przytycki, Feliks
    Rams, Michal
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 1441 - 1493
  • [25] Continuity properties of Lyapunov exponents for surface diffeomorphisms
    Jérôme Buzzi
    Sylvain Crovisier
    Omri Sarig
    Inventiones mathematicae, 2022, 230 : 767 - 849
  • [26] Continuity properties of Lyapunov exponents for surface diffeomorphisms
    Buzzi, Jerome
    Crovisier, Sylvain
    Sarig, Omri
    INVENTIONES MATHEMATICAE, 2022, 230 (02) : 767 - 849
  • [27] On axiom A diffeomorphisms C0-close to pseudo-Anosov maps
    Lewowicz, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 122 (1-2) : 309 - 319
  • [28] Lyapunov minimizing measures for expanding maps of the circle
    Contreras, G
    Lopes, AO
    Thieullen, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1379 - 1409
  • [29] FLEXIBILITY OF LYAPUNOV EXPONENTS FOR EXPANDING CIRCLE MAPS
    Erchenko, Alena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2325 - 2342
  • [30] On the Lyapunov Exponents for a Class of Circle Diffeomorphisms Driven by Expanding Circle Endomorphisms
    Kristian Bjerklöv
    Journal of Dynamics and Differential Equations, 2022, 34 : 107 - 114