Optimal conflict-avoiding codes of odd length and weight three

被引:0
|
作者
Hung-Lin Fu
Yuan-Hsun Lo
Kenneth W. Shum
机构
[1] National Chiao Tung University,Department of Applied Mathematics
[2] The Chinese University of Hong Kong,Institute of Network Coding
来源
关键词
Conflict-avoiding code; Tight equi-difference conflict-avoiding code; Optimal code with weight 3; 94B25; 94C15; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
A conflict-avoiding code (CAC) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} of length n and weight k is a collection of k-subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_{n}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta (x) \cap \Delta (y) = \emptyset}$$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x, y \in \mathcal{C}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\neq y}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta (x) = \{a - b:\,a, b \in x, a \neq b\}}$$\end{document} . Let CAC(n, k) denote the class of all CACs of length n and weight k. A CAC with maximum size is called optimal. In this paper, we study the constructions of optimal CACs for the case when n is odd and k = 3.
引用
收藏
页码:289 / 309
页数:20
相关论文
共 50 条
  • [31] Conflict-avoiding codes and cyclic triple systems
    Levenshtein, V. I.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 199 - 212
  • [32] A tight asymptotic bound on the size of constant-weight conflict-avoiding codes
    Kenneth W. Shum
    Wing Shing Wong
    Designs, Codes and Cryptography, 2010, 57 : 1 - 14
  • [33] A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes
    Shum, Kenneth W.
    Wong, Wing Shing
    Chen, Chung Shue
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (07) : 3265 - 3276
  • [34] Weighted maximum matchings and optimal equi-difference conflict-avoiding codes
    Lo, Yuan-Hsun
    Fu, Hung-Lin
    Lin, Yi-Hean
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (02) : 361 - 372
  • [35] A tight asymptotic bound on the size of constant-weight conflict-avoiding codes
    Shum, Kenneth W.
    Wong, Wing Shing
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 57 (01) : 1 - 14
  • [36] Weighted maximum matchings and optimal equi-difference conflict-avoiding codes
    Yuan-Hsun Lo
    Hung-Lin Fu
    Yi-Hean Lin
    Designs, Codes and Cryptography, 2015, 76 : 361 - 372
  • [37] Conflict-Avoiding Codes of Prime Lengths and Cyclotomic Numbers
    Hsia, Liang-Chung
    Li, Hua-Chieh
    Sun, Wei-Liang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 6834 - 6841
  • [38] On Tight Optimal Conflict-Avoiding Codes for 3, 4, 5 and 6 Active Users
    Baicheva, Tsonka
    Topalova, Svetlana
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2018, 18 (05) : 5 - 11
  • [39] Certain diagonal equations and conflict-avoiding codes of prime lengths
    Hsia, Liang-Chung
    Li, Hua-Chieh
    Sun, Wei-Liang
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 92
  • [40] Multichannel Conflict-Avoiding Codes of Weights Three and Four (vol 67, pg 3557, 2021)
    Lo, Yuan-Hsun
    Shum, Kenneth W.
    Wong, Wing Shing
    Zhang, Yijin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (08) : 6118 - 6120