Optimal conflict-avoiding codes of odd length and weight three

被引:0
|
作者
Hung-Lin Fu
Yuan-Hsun Lo
Kenneth W. Shum
机构
[1] National Chiao Tung University,Department of Applied Mathematics
[2] The Chinese University of Hong Kong,Institute of Network Coding
来源
关键词
Conflict-avoiding code; Tight equi-difference conflict-avoiding code; Optimal code with weight 3; 94B25; 94C15; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
A conflict-avoiding code (CAC) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} of length n and weight k is a collection of k-subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_{n}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta (x) \cap \Delta (y) = \emptyset}$$\end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x, y \in \mathcal{C}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x\neq y}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta (x) = \{a - b:\,a, b \in x, a \neq b\}}$$\end{document} . Let CAC(n, k) denote the class of all CACs of length n and weight k. A CAC with maximum size is called optimal. In this paper, we study the constructions of optimal CACs for the case when n is odd and k = 3.
引用
收藏
页码:289 / 309
页数:20
相关论文
共 50 条
  • [1] Optimal conflict-avoiding codes of odd length and weight three
    Fu, Hung-Lin
    Lo, Yuan-Hsun
    Shum, Kenneth W.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 289 - 309
  • [2] Optimal equi-difference conflict-avoiding codes of odd length and weight three
    Lin, Yiling
    Mishima, Miwako
    Satoh, Junya
    Jimbo, Masakazu
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 : 49 - 68
  • [3] New optimal constructions of conflict-avoiding codes of odd length and weight 3
    Wenping Ma
    Chun-e Zhao
    Dongsu Shen
    Designs, Codes and Cryptography, 2014, 73 : 791 - 804
  • [4] New optimal constructions of conflict-avoiding codes of odd length and weight 3
    Ma, Wenping
    Zhao, Chun-e
    Shen, Dongsu
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (03) : 791 - 804
  • [5] Optimal strongly conflict-avoiding codes of even length and weight three
    Zhang, Yijin
    Lo, Yuan-Hsun
    Wong, Wing Shing
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (02) : 367 - 382
  • [6] Optimal strongly conflict-avoiding codes of even length and weight three
    Yijin Zhang
    Yuan-Hsun Lo
    Wing Shing Wong
    Designs, Codes and Cryptography, 2016, 79 : 367 - 382
  • [7] Strongly Conflict-Avoiding Codes with Weight Three
    Yu, Zhihua
    Wang, Jinhua
    WIRELESS PERSONAL COMMUNICATIONS, 2015, 84 (01) : 153 - 165
  • [8] Strongly Conflict-Avoiding Codes with Weight Three
    Zhihua Yu
    Jinhua Wang
    Wireless Personal Communications, 2015, 84 : 153 - 165
  • [9] Optimal conflict-avoiding codes for three active users
    Levenshtein, VI
    Tonchev, VD
    2005 IEEE International Symposium on Information Theory (ISIT), Vols 1 and 2, 2005, : 535 - 537
  • [10] Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3
    Miwako Mishima
    Hung-Lin Fu
    Shoichi Uruno
    Designs, Codes and Cryptography, 2009, 52 : 275 - 291