New non-standard topologies

被引:0
|
作者
Adel Khalfallah
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
关键词
Non-standard analysis; S-topology; Q-topology; Robinson’s asymptotic numbers; Primary 54J05; 26E35; 03H05; 46S20; Secondary 46S10; 46F10; 12J25; 03C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, on a non-standard extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle ( {}^*X, {}^*d)$$\end{document} of a metric space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle (X,d)$$\end{document}, we construct a chain of new non-standard topologies in terms of convex subrings of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {}^*\mathbb{R }$$\end{document}, its minimal element is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle S$$\end{document}-topology and its maximal is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle Q$$\end{document}-topology. Next, we construct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \widehat{X}$$\end{document}, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {\fancyscript{F}}$$\end{document}-asymptotic hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle X$$\end{document}, and we prove that such space is metrizable and complete when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {\fancyscript{F}}$$\end{document} is generated by an asymptotic scale. Finally, we provide a pseudo-valuation taking integral values, equivalent to the classical Robinson’s valuation, on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle {}^\rho \mathbb{R }$$\end{document}, the Robinson’s field of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \rho $$\end{document}-asymptotic numbers.
引用
收藏
页码:323 / 344
页数:21
相关论文
共 50 条
  • [21] Standard and Non-Standard Solar Models
    Joyce A. Guzik
    Corinne Neuforge-Verheecke
    A. Cody Young
    Richard I. Epstein
    Francis M. Poulin
    Jason R. Schissel
    Solar Physics, 2001, 200 : 305 - 321
  • [22] Standard and non-standard precision tests of the standard model
    Passarino, G
    ACTA PHYSICA POLONICA B, 1997, 28 (06): : 1349 - 1362
  • [23] The limits of non-standard contingency
    Robert Michels
    Philosophical Studies, 2019, 176 : 533 - 558
  • [24] Normalization of non-standard words
    Sproat, R
    Black, AW
    Chen, S
    Kumar, S
    Ostendorf, M
    Richards, C
    COMPUTER SPEECH AND LANGUAGE, 2000, 15 (03): : 287 - 333
  • [25] ROBINSON,A - NON-STANDARD ANALYSIS
    BOYER, CB
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05): : 608 - &
  • [26] NON-STANDARD ANALYSIS - ROBINSON,A
    MULLER, PJ
    REVIEW OF METAPHYSICS, 1966, 20 (02): : 375 - 375
  • [27] NON-STANDARD MATERIALS AT THE NLL
    BAKEWELL, KGB
    ASLIB PROCEEDINGS, 1965, 17 (10): : 297 - 297
  • [28] THE APPLICATIONS OF NON-STANDARD ANALYSIS
    DIENER, F
    DIENER, M
    RECHERCHE, 1989, 20 (206): : 68 - &
  • [29] NON-STANDARD MATERIAL AT THE NLL
    BARR, KP
    ASLIB PROCEEDINGS, 1965, 17 (08): : 240 - 245
  • [30] Non-standard Wigner doublets
    Barbosa, F. A. da Silva
    da Silva, J. M. Hoff
    EPL, 2023, 144 (05)