Joint semiparametric mean-covariance model in longitudinal study

被引:0
|
作者
Jie Mao
ZhongYi Zhu
机构
[1] Fudan University,Department of Statistics
来源
Science China Mathematics | 2011年 / 54卷
关键词
generalized estimating equation; kernel estimation; local linear regression; modified Cholesky decomposition; semiparametric varying-coefficient partially linear model; 62F12; 62G08; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
引用
收藏
页码:145 / 164
页数:19
相关论文
共 50 条
  • [31] jmcm: a Python']Python package for analyzing longitudinal data using joint mean-covariance models
    Yang, Xuerui
    Pan, Jianxin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (11) : 5446 - 5461
  • [32] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    Jiangli Wang
    Yu Chen
    Weiping Zhang
    [J]. Journal of Systems Science and Complexity, 2019, 32 : 1675 - 1692
  • [33] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    Wang, Jiangli
    Chen, Yu
    Zhang, Weiping
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (06) : 1675 - 1692
  • [34] Parsimonious Mean-Covariance Modeling for Longitudinal Data with ARMA Errors
    WANG Jiangli
    CHEN Yu
    ZHANG Weiping
    [J]. Journal of Systems Science & Complexity, 2019, 32 (06) : 1675 - 1692
  • [35] Restricted maximum likelihood estimation of joint mean-covariance models
    Papageorgiou, Georgios
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (02): : 225 - 242
  • [36] D-optimal designs of mean-covariance models for longitudinal data
    Yi, Siyu
    Zhou, Yongdao
    Pan, Jianxin
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (05) : 1072 - 1085
  • [37] Robust maximum L9-likelihood estimation of joint mean-covariance models for longitudinal data
    Xu, Lin
    Xiang, Sijia
    Yao, Weixin
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 397 - 411
  • [38] Continuous Mean-Covariance Bandits
    Du, Yihan
    Wang, Siwei
    Fang, Zhixuan
    Huang, Longbo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Robust semiparametric modeling of mean and covariance in longitudinal data
    Mengfei Ran
    Yihe Yang
    Yutaka Kano
    [J]. Japanese Journal of Statistics and Data Science, 2023, 6 : 625 - 648
  • [40] Robust semiparametric modeling of mean and covariance in longitudinal data
    Ran, Mengfei
    Yang, Yihe
    Kano, Yutaka
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (02) : 625 - 648