Semiparametric Mixture of Regression Models Under Unimodal Error Distribution

被引:0
|
作者
Linden Yuan
Lili Zhou
Ao Yuan
机构
[1] University of Maryland,
[2] Georgetown University,undefined
关键词
Isotonic regression; Linear regression; Mixture model; Semiparametric maximum likelihood estimation; Unimodal density;
D O I
暂无
中图分类号
学科分类号
摘要
A semiparametric model has the advantage of being more robust than a parametric model and more efficient than a nonparametric model. In this paper, a semiparametric regression mixture model, in which the regression coefficients are specified to be parametric and the common sub-distribution is nonparametric, is proposed and studied. For parameter identifiability, the sub-distribution is assumed to be unimodal. The symmetry condition is also considered, and it is shown that it can be used to reduce estimation variability. The semiparametric maximum likelihood method is used to estimate the model parameters. The estimators are shown to be strongly consistent, the convergence rate is derived, and a weak convergence of the estimated density is established with a rate of n1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1/3}$$\end{document} and a Chernoff-type weak limit. Simulation studies are conducted to evaluate the performance of the proposed method, and then, the method is applied to analyze a real data.
引用
收藏
相关论文
共 50 条
  • [31] A REVIEW OF SEMIPARAMETRIC MIXTURE-MODELS
    LINDSAY, BG
    LESPERANCE, ML
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 47 (1-2) : 29 - 39
  • [32] Semiparametric regression estimation for longitudinal data in models with martingale difference error's structure
    Zhou, Xing-Cai
    Lin, Jin-Guan
    [J]. STATISTICS, 2013, 47 (03) : 521 - 534
  • [33] Semiparametric group testing regression models
    Wang, D.
    McMahan, C. S.
    Gallagher, C. M.
    Kulasekera, K. B.
    [J]. BIOMETRIKA, 2014, 101 (03) : 587 - 598
  • [34] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [35] Semiparametric estimation of count regression models
    Department of Economics, Georgia State University, University Plaza, Atlanta, GA 30303, United States
    不详
    不详
    [J]. J Econom, 1 (123-150):
  • [36] Semiparametric estimation of count regression models
    Gurmu, S
    Rilstone, P
    Stern, S
    [J]. JOURNAL OF ECONOMETRICS, 1999, 88 (01) : 123 - 150
  • [37] Nonparametric tests for semiparametric regression models
    Federico Ferraccioli
    Laura M. Sangalli
    Livio Finos
    [J]. TEST, 2023, 32 : 1106 - 1130
  • [38] New Ridge Regression Estimator in Semiparametric Regression Models
    Roozbeh, Mahdi
    Arashi, Mohammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (10) : 3683 - 3715
  • [39] Sensitivity analysis in semiparametric regression models
    Fung, WK
    Zhu, ZY
    Wei, BC
    [J]. MEASUREMENT AND MULTIVARIATE ANALYSIS, 2002, : 233 - 240
  • [40] Semiparametric regression estimation in copula models
    Bagdonavicius, Vilijandas
    Malov, Sergey V.
    Nikulin, Mikhail S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1449 - 1467