Semiparametric Mixture of Regression Models Under Unimodal Error Distribution

被引:0
|
作者
Linden Yuan
Lili Zhou
Ao Yuan
机构
[1] University of Maryland,
[2] Georgetown University,undefined
关键词
Isotonic regression; Linear regression; Mixture model; Semiparametric maximum likelihood estimation; Unimodal density;
D O I
暂无
中图分类号
学科分类号
摘要
A semiparametric model has the advantage of being more robust than a parametric model and more efficient than a nonparametric model. In this paper, a semiparametric regression mixture model, in which the regression coefficients are specified to be parametric and the common sub-distribution is nonparametric, is proposed and studied. For parameter identifiability, the sub-distribution is assumed to be unimodal. The symmetry condition is also considered, and it is shown that it can be used to reduce estimation variability. The semiparametric maximum likelihood method is used to estimate the model parameters. The estimators are shown to be strongly consistent, the convergence rate is derived, and a weak convergence of the estimated density is established with a rate of n1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{1/3}$$\end{document} and a Chernoff-type weak limit. Simulation studies are conducted to evaluate the performance of the proposed method, and then, the method is applied to analyze a real data.
引用
收藏
相关论文
共 50 条
  • [1] Semiparametric Mixture of Regression Models Under Unimodal Error Distribution
    Yuan, Linden
    Zhou, Lili
    Yuan, Ao
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2020, 14 (03)
  • [2] Estimating the error distribution function in semiparametric additive regression models
    Mueller, Ursula U.
    Schick, Anton
    Wefelmeyer, Wolfgang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (02) : 552 - 566
  • [3] Semiparametric mixture regression with unspecified error distributions
    Ma, Yanyuan
    Wang, Shaoli
    Xu, Lin
    Yao, Weixin
    [J]. TEST, 2021, 30 (02) : 429 - 444
  • [4] Semiparametric mixture regression with unspecified error distributions
    Yanyuan Ma
    Shaoli Wang
    Lin Xu
    Weixin Yao
    [J]. TEST, 2021, 30 : 429 - 444
  • [5] Semiparametric mixture of additive regression models
    Zhang, Yi
    Zheng, Qingle
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (03) : 681 - 697
  • [6] A Selective Overview of Semiparametric Mixture of Regression Models
    Xiang, Sijia
    Yao, Weixin
    [J]. NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 41 - 65
  • [7] Estimating the error distribution function in semiparametric regression
    Muller, Ursula U.
    Schick, Anton
    Wefelmeyer, Wolfgang
    [J]. STATISTICS & RISK MODELING, 2007, 25 (01) : 1 - 18
  • [8] EFFICIENT ESTIMATES IN SEMIPARAMETRIC ADDITIVE REGRESSION-MODELS WITH UNKNOWN ERROR DISTRIBUTION
    CUZICK, J
    [J]. ANNALS OF STATISTICS, 1992, 20 (02): : 1129 - 1136
  • [9] On wavelet estimation in semiparametric regression models under convergence system error sequences
    Li, Qiang
    Wu, Yi
    [J]. 2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1713 - 1716
  • [10] Estimating the error distribution in semiparametric transformation models
    Heuchenne, Cedric
    Samb, Rawane
    Van Keilegom, Ingrid
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2391 - 2419