A Bound for the Diameter of Distance-Regular Graphs

被引:0
|
作者
L. Pyber
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences; Budapest,
[2] P.O.B. 127,undefined
[3] H–1364 Hungary; E-mail: pyber@math-inst.hu,undefined
来源
Combinatorica | 1999年 / 19卷
关键词
AMS Subject Classification (1991) Classes:  05E30, 05C12;
D O I
暂无
中图分类号
学科分类号
摘要
vertices has diameter at most 5 logn. This essentially settles a problem of Brouwer, Cohen and Neumaier.
引用
收藏
页码:549 / 553
页数:4
相关论文
共 50 条
  • [41] CUBIC DISTANCE-REGULAR GRAPHS
    BIGGS, NL
    BOSHIER, AG
    SHAWETAYLOR, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 33 : 385 - 394
  • [42] Tight distance-regular graphs
    Jurisic, A
    Koolen, J
    Terwilliger, P
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 12 (02) : 163 - 197
  • [43] Twice Q-polynomial distance-regular graphs of diameter 4
    JianMin Ma
    Jack H. Koolen
    [J]. Science China Mathematics, 2015, 58 : 2683 - 2690
  • [44] On bipartite distance-regular graphs with a strongly closed subgraph of diameter three
    Kong, Qian
    Wang, Kaishun
    [J]. DISCRETE MATHEMATICS, 2010, 310 (24) : 3523 - 3527
  • [45] Extremal 1-codes in distance-regular graphs of diameter 3
    Jurisic, Aleksandar
    Vidali, Janos
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (1-2) : 29 - 47
  • [46] A construction of distance-regular graphs from subspaces in d-bounded distance-regular graphs
    Gao, Suogang
    Guo, Jun
    [J]. ARS COMBINATORIA, 2011, 98 : 135 - 148
  • [47] Weakly distance-regular digraphs whose underlying graphs are distance-regular, I
    Yang, Yuefeng
    Zeng, Qing
    Wang, Kaishun
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 827 - 847
  • [48] On Bounding the Diameter of a Distance-Regular Graph
    Neumaier, Arnold
    Penjic, Safet
    [J]. COMBINATORICA, 2022, 42 (02) : 237 - 251
  • [49] Distance-regular graphs with strongly regular subconstituents
    Kasikova, A
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (03) : 247 - 252
  • [50] From regular boundary graphs to antipodal distance-regular graphs
    Fiol, MA
    Garriga, E
    Yebra, JLA
    [J]. JOURNAL OF GRAPH THEORY, 1998, 27 (03) : 123 - 140