Banach Space;
Contact Point;
Unit Ball;
Orthogonal Projection;
Convex Body;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
LetB be a convex body in ℝn and let ɛ be an ellipsoid of minimal volume containingB. By contact points ofB we mean the points of the intersection between the boundaries ofB and ɛ. By a result of P. Gruber, a generic convex body in ℝn has (n+3)·n/2 contact points. We prove that for every ɛ>0 and for every convex bodyB ⊂ ℝn there exists a convex bodyK having\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$m \leqslant C(\varepsilon ) \cdot n\log ^3 n$$
\end{document} contact points whose Banach-Mazur distance toB is less than 1+ɛ.