Analysis of solution algorithms for the three-dimensional Navier-Stokes equations in the natural variables

被引:0
|
作者
V. V. Kolmychkov
O. S. Mazhorova
Yu. P. Popov
机构
[1] Russian Academy of Sciences,Institute for Applied Mathematics
来源
Differential Equations | 2006年 / 42卷
关键词
Rayleigh Number; Neumann Boundary Condition; Hexagonal Cell; Time Layer; Incompressibility Condition;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:994 / 1004
页数:10
相关论文
共 50 条
  • [1] Analysis of solution algorithms for the three-dimensional Navier-Stokes equations in the natural variables
    Kolmychkov, V. V.
    Mazhorova, O. S.
    Popov, Yu. P.
    [J]. DIFFERENTIAL EQUATIONS, 2006, 42 (07) : 994 - 1004
  • [2] Numerical solution of the three-dimensional Navier-Stokes equations
    Jaberg, Helmut
    [J]. Aktiengesellschaft), 1988, (24 e): : 20 - 32
  • [3] NEW ANALYTICAL SOLUTION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Rashidi, Mohammad Mehdi
    Domairry, Ganji
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (26): : 3147 - 3155
  • [4] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426
  • [6] Hopf bifurcation of the three-dimensional Navier-Stokes equations
    Chen, ZM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (02) : 583 - 608
  • [7] Intermittency in solutions of the three-dimensional Navier-Stokes equations
    Gibbon, JD
    Doering, CR
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 478 : 227 - 235
  • [8] Regularity Criteria for the Three-dimensional Navier-Stokes Equations
    Cao, Chongsheng
    Titi, Edriss S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2643 - 2661
  • [9] On the study of three-dimensional compressible Navier-Stokes equations
    Abdelwahed, Mohamed
    Bade, Rabe
    Chaker, Hedia
    Hassine, Maatoug
    [J]. BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [10] Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations
    Margazoglou, G.
    Biferale, L.
    Cencini, M.
    Gallavotti, G.
    Lucarini, V
    [J]. PHYSICAL REVIEW E, 2022, 105 (06)