Finite edge-transitive oriented graphs of valency four with cyclic normal quotients

被引:0
|
作者
Jehan A. Al-bar
Ahmad N. Al-kenani
Najat Mohammad Muthana
Cheryl E. Praeger
机构
[1] King Abdulaziz University,Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics M019
[2] The University of Western Australia,undefined
来源
关键词
Edge-transitive graphs; Oriented graphs; Cyclic quotient graph; Transitive group;
D O I
暂无
中图分类号
学科分类号
摘要
We study finite four-valent graphs Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} admitting an edge-transitive group G of automorphisms such that G determines and preserves an edge-orientation on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, and such that at least one G-normal quotient is a cycle (a quotient modulo the orbits of a normal subgroup of G). We show, on the one hand, that the number of distinct cyclic G-normal quotients can be unboundedly large. On the other hand, existence of independent cyclic G-normal quotients (that is, they are not extendable to a common cyclic G-normal quotient) places severe restrictions on the graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and we classify all examples. We show there are five infinite families of such pairs (Γ,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Gamma ,G)$$\end{document} and in particular that all such graphs have at least one normal quotient which is an unoriented cycle. We compare this new approach with existing treatments for the sub-class of weak metacirculant graphs with these properties, finding that only two infinite families of examples occur in common from both analyses. Several open problems are posed.
引用
收藏
页码:109 / 133
页数:24
相关论文
共 50 条
  • [31] On normal quotients of transitive graphs
    Muzychuk, M
    [J]. ARS COMBINATORIA, 2001, 59 : 171 - 180
  • [32] Normal edge-transitive Cayley graphs and Frattini-like subgroups
    Khosravi, Behnam
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRA, 2022, 607 : 473 - 498
  • [33] ON GRAPHS WITH EDGE-TRANSITIVE AUTOMORPHISM-GROUPS
    STELLMACHER, B
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1984, 28 (02) : 211 - 266
  • [34] Classifying a family of edge-transitive metacirculant graphs
    Song, Shu-Jiao
    Li, Cai Heng
    Wang, Dianjun
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 35 (03) : 497 - 513
  • [35] Basic tetravalent oriented graphs with cyclic normal quotients
    Poznanovic, Nemanja
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 206
  • [36] Edge-transitive bi-Cayley graphs
    Conder, Marston
    Zhou, Jin-Xin
    Feng, Yan-Quan
    Zhang, Mi-Mi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 264 - 306
  • [37] Classification of Edge-Transitive Rose Window Graphs
    Kovacs, Istvan
    Kutnar, Klavdija
    Marusic, Dragan
    [J]. JOURNAL OF GRAPH THEORY, 2010, 65 (03) : 216 - 231
  • [38] A characterization of a family of edge-transitive metacirculant graphs
    Li, Cai Heng
    Pan, Jiangmin
    Song, Shu Jiao
    Wang, Dianjun
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 107 : 12 - 25
  • [39] Normal edge-transitive and 1/2-arc-transitive semi-Cayley graphs
    Ashrafi, A. R.
    Soleimani, B.
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1287 - 1299
  • [40] Edge-transitive bi-p-metacirculants of valency p
    Qin, Yan-Li
    Zhou, Jin-Xin
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 215 - 235