Finite edge-transitive oriented graphs of valency four with cyclic normal quotients

被引:0
|
作者
Jehan A. Al-bar
Ahmad N. Al-kenani
Najat Mohammad Muthana
Cheryl E. Praeger
机构
[1] King Abdulaziz University,Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics M019
[2] The University of Western Australia,undefined
来源
关键词
Edge-transitive graphs; Oriented graphs; Cyclic quotient graph; Transitive group;
D O I
暂无
中图分类号
学科分类号
摘要
We study finite four-valent graphs Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} admitting an edge-transitive group G of automorphisms such that G determines and preserves an edge-orientation on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, and such that at least one G-normal quotient is a cycle (a quotient modulo the orbits of a normal subgroup of G). We show, on the one hand, that the number of distinct cyclic G-normal quotients can be unboundedly large. On the other hand, existence of independent cyclic G-normal quotients (that is, they are not extendable to a common cyclic G-normal quotient) places severe restrictions on the graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and we classify all examples. We show there are five infinite families of such pairs (Γ,G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Gamma ,G)$$\end{document} and in particular that all such graphs have at least one normal quotient which is an unoriented cycle. We compare this new approach with existing treatments for the sub-class of weak metacirculant graphs with these properties, finding that only two infinite families of examples occur in common from both analyses. Several open problems are posed.
引用
收藏
页码:109 / 133
页数:24
相关论文
共 50 条
  • [1] Finite edge-transitive oriented graphs of valency four with cyclic normal quotients
    Al-bar, Jehan A.
    Al-kenani, Ahmad N.
    Muthana, Najat Mohammad
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) : 109 - 133
  • [2] Finite edge-transitive oriented graphs of valency four: a global approach
    Al-bar, Jehan A.
    Al-kenani, Ahmad N.
    Muthana, Najat M.
    Praeger, Cheryl E.
    Spiga, Pablo
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [3] On edge-transitive Cayley graphs of valency four
    Fang, XG
    Li, CH
    Xu, MY
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 1107 - 1116
  • [4] Finite normal edge-transitive Cayley graphs
    Praeger, CE
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 60 (02) : 207 - 220
  • [5] Normal Edge-transitive Cayley Graphs on dihedral Groups of valency p
    Talebi, Ali. A.
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 19, 2007, 19 : 450 - 451
  • [6] Finite edge-transitive dihedrant graphs
    Pan, Jiangmin
    Yu, Xue
    Zhang, Hua
    Huang, Zhaohong
    [J]. DISCRETE MATHEMATICS, 2012, 312 (05) : 1006 - 1012
  • [7] On Reconstruction of Normal Edge-Transitive Cayley Graphs
    Khosravi, Behnam
    Khosravi, Behrooz
    Khosravi, Bahman
    [J]. ANNALS OF COMBINATORICS, 2020, 24 (04) : 791 - 807
  • [8] On Reconstruction of Normal Edge-Transitive Cayley Graphs
    Behnam Khosravi
    Behrooz Khosravi
    Bahman Khosravi
    [J]. Annals of Combinatorics, 2020, 24 : 791 - 807
  • [9] ON THE EIGENVALUES OF NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS
    Ghorbani, M.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (01): : 101 - 107
  • [10] On quasiprimitive edge-transitive graphs of odd order and twice prime valency
    Liao, Hong Ci
    Li, Jing Jian
    Lu, Zai Ping
    [J]. JOURNAL OF GROUP THEORY, 2020, 23 (06) : 1017 - 1037