Estimation of extremes for Weibull-tail distributions in the presence of random censoring

被引:0
|
作者
Julien Worms
Rym Worms
机构
[1] Université Paris-Saclay/Université de Versailles-Saint-Quentin-En-Yvelines,
[2] Laboratoire de Mathématiques de Versailles (CNRS UMR 8100),undefined
[3] Université Paris-Est,undefined
[4] Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050),undefined
[5] UPEC,undefined
来源
Extremes | 2019年 / 22卷
关键词
Weibull-tail; Tail inference; Random censoring; Asymptotic representation; Primary 62G32; Secondary 62N02;
D O I
暂无
中图分类号
学科分类号
摘要
The Weibull-tail class of distributions is a sub-class of the Gumbel extreme domain of attraction, and it has caught the attention of a number of researchers in the last decade, particularly concerning the estimation of the so-called Weibull-tail coefficient. In this paper, we propose an estimator of this Weibull-tail coefficient when the Weibull-tail distribution of interest is censored from the right by another Weibull-tail distribution: to the best of our knowledge, this is the first one proposed in this context. A corresponding estimator of extreme quantiles is also proposed. In both mild censoring and heavy censoring (in the tail) settings, asymptotic normality of these estimators is proved, and their finite sample behavior is presented via some simulations.
引用
收藏
页码:667 / 704
页数:37
相关论文
共 50 条
  • [31] New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring
    E. Bothma
    J. S. Allison
    I. J. H. Visagie
    Computational Statistics, 2022, 37 : 1751 - 1770
  • [32] New classes of tests for the Weibull distribution using Stein's method in the presence of random right censoring
    Bothma, E.
    Allison, J. S.
    Visagie, I. J. H.
    COMPUTATIONAL STATISTICS, 2022, 37 (04) : 1751 - 1770
  • [33] Handling missing extremes in tail estimation
    Xu, Hui
    Davis, Richard
    Samorodnitsky, Gennady
    EXTREMES, 2022, 25 (02) : 199 - 227
  • [34] Handling missing extremes in tail estimation
    Hui Xu
    Richard Davis
    Gennady Samorodnitsky
    Extremes, 2022, 25 : 199 - 227
  • [35] Bayesian estimation and prediction for Weibull model with progressive censoring
    Huang, Syuan-Rong
    Wu, Shuo-Jye
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (11) : 1607 - 1620
  • [36] ESTIMATION OF WEIBULL PARAMETERS WITH COMPETING-MODE CENSORING
    MCCOOL, JI
    IEEE TRANSACTIONS ON RELIABILITY, 1976, 25 (01) : 25 - 31
  • [37] Sampling and Censoring in Estimation of Flow Distributions
    Antunes, Nelson
    Pipiras, Vladas
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 5865 - 5871
  • [38] Empirical bayes estimation with random censoring
    Liang T.
    Journal of Statistical Theory and Practice, 2010, 4 (1) : 71 - 83
  • [39] On the estimation of the functional Weibull tail-coefficient
    Gardes, Laurent
    Girard, Stephane
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 29 - 45
  • [40] Weibull tail-distributions revisited: A new look at some tail estimators
    Gardes, Laurent
    Girard, Stephane
    Guillou, Armelle
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 429 - 444