Estimation of extremes for Weibull-tail distributions in the presence of random censoring

被引:0
|
作者
Julien Worms
Rym Worms
机构
[1] Université Paris-Saclay/Université de Versailles-Saint-Quentin-En-Yvelines,
[2] Laboratoire de Mathématiques de Versailles (CNRS UMR 8100),undefined
[3] Université Paris-Est,undefined
[4] Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050),undefined
[5] UPEC,undefined
来源
Extremes | 2019年 / 22卷
关键词
Weibull-tail; Tail inference; Random censoring; Asymptotic representation; Primary 62G32; Secondary 62N02;
D O I
暂无
中图分类号
学科分类号
摘要
The Weibull-tail class of distributions is a sub-class of the Gumbel extreme domain of attraction, and it has caught the attention of a number of researchers in the last decade, particularly concerning the estimation of the so-called Weibull-tail coefficient. In this paper, we propose an estimator of this Weibull-tail coefficient when the Weibull-tail distribution of interest is censored from the right by another Weibull-tail distribution: to the best of our knowledge, this is the first one proposed in this context. A corresponding estimator of extreme quantiles is also proposed. In both mild censoring and heavy censoring (in the tail) settings, asymptotic normality of these estimators is proved, and their finite sample behavior is presented via some simulations.
引用
收藏
页码:667 / 704
页数:37
相关论文
共 50 条