共 50 条
Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation
被引:0
|作者:
Morgan Pierre
机构:
[1] Université de Poitiers,Laboratoire de Mathématiques et Applications, CNRS
来源:
关键词:
Allen–Cahn equation;
Backward Euler scheme;
Global attractor;
Exponential attractor;
37L30;
65M10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider a time semi-discretization of a generalized Allen–Cahn equation with time-step parameter τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document}. For every τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document}, we build an exponential attractor Mτ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\tau $$\end{document} of the discrete-in-time dynamical system. We prove that Mτ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\tau $$\end{document} converges to an exponential attractor M0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_0$$\end{document} of the continuous-in-time dynamical system for the symmetric Hausdorff distance as τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document} tends to 0. We also provide an explicit estimate of this distance and we prove that the fractal dimension of Mτ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}_\tau $$\end{document} is bounded by a constant independent of τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document}. Our construction is based on the result of Efendiev, Miranville and Zelik concerning the continuity of exponential attractors under perturbation of the underlying semi-group. Their result has been applied in many situations, but here, for the first time, the perturbation is a discretization. Our method is applicable to a large class of dissipative problems.
引用
收藏
页码:121 / 153
页数:32
相关论文