Analytical Conditions for Optimality in Inverse Problems of Heat Conduction

被引:0
|
作者
A. N. Diligenskaya
E. Ya. Rapoport
机构
[1] Samara State Technical University,
来源
High Temperature | 2021年 / 59卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:292 / 301
页数:9
相关论文
共 50 条
  • [21] ESTIMATION OF UNCERTAINTY IN AN ANALYTICAL INVERSE HEAT CONDUCTION SOLUTION
    Woodfield, P. L.
    Monde, M.
    EXPERIMENTAL HEAT TRANSFER, 2009, 22 (03) : 129 - 143
  • [22] An analytical solution for two-dimensional inverse heat conduction problems using Laplace transform
    Monde, M
    Arima, H
    Liu, W
    Mitutake, Y
    Hammad, JA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (12) : 2135 - 2148
  • [23] Solving the inverse heat conduction problems with the use of heat functions
    Cialkowski, MJ
    Futakiewicz, S
    Hozejowski, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S673 - S674
  • [24] Sensitivity coefficients and heat polynomials in the inverse heat conduction problems
    Kruk, B
    Sokala, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S693 - S694
  • [25] Analytical solutions for heat conduction problems with three kinds of periodic boundary conditions and their applications
    Xu, Xiangtian
    Li, Gaosheng
    Zhao, Yuqin
    Liu, Tiejun
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [26] A technique for uncertainty analysis for inverse heat conduction problems
    Blackwell, Ben
    Beck, James V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (04) : 753 - 759
  • [27] A global time treatment for inverse heat conduction problems
    Frankel, JI
    Keyhani, M
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (04): : 673 - 683
  • [28] Physical regularization for inverse problems of stationary heat conduction
    Poznań University of Technology, 5 Maria Sklodowska-Curie Sq., 60-965 Poznań, Poland
    不详
    J Inverse Ill Posed Probl, 2007, 4 (347-364):
  • [29] BEM APPROACH TO INVERSE HEAT-CONDUCTION PROBLEMS
    KURPISZ, K
    NOWAK, AJ
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1992, 10 (04) : 291 - 297
  • [30] Global time treatment for inverse heat conduction problems
    Frankel, J.I.
    Keyhani, M.
    Journal of Heat Transfer, 1997, 119 (04): : 673 - 683