Sub-Gaussian model of processes with heavy-tailed distributions applied to air permeabilities of fractured tuff

被引:0
|
作者
Monica Riva
Shlomo P. Neuman
Alberto Guadagnini
机构
[1] Politecnico di Milano,Dipartimento di Ingegneria Idraulica Ambientale, Infrastrutture Viarie e Rilevamento
[2] University of Arizona,Department of Hydrology and Water Resources
关键词
Air permeabilities; Fractured tuff; Heavy-tailed distributions; Parameter estimation; Nonlinear scaling; Power law;
D O I
暂无
中图分类号
学科分类号
摘要
Earth and environmental variables are commonly taken to have multivariate Gaussian or heavy-tailed distributions in space and/or time. This is based on the observation that univariate frequency distributions of corresponding samples appear to be Gaussian or heavy-tailed. Of particular interest to us is the well-documented but heretofore little noticed and unexplained phenomenon that whereas the frequency distribution of log permeability data often seems to be Gaussian, that of corresponding increments tends to exhibit heavy tails. The tails decay as powers of −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} where 1 < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} < 2 is either constant or grows monotonically toward an asymptote with increasing separation distance or lag. We illustrate the latter phenomenon on 1-m scale log air permeabilities from pneumatic tests in 6 vertical and inclined boreholes completed in unsaturated fractured tuff near Superior, Arizona. We then show theoretically and demonstrate numerically, on synthetically generated signals, that whereas the case of constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} is consistent with a collection of samples from truncated sub-Gaussian fractional Lévy noise, a random field (or process) subordinated to truncated fractional Gaussian noise, the case of variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} is consistent with a collection of samples from truncated sub-Gaussian fractional Lévy motion (tfLm), a random field subordinated to truncated fractional Brownian motion. Whereas the first type of signal is relatively regular and characterized by Lévy index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}, the second is highly irregular (punctuated by spurious spikes) and characterized by the asymptote of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} values associated with its increments. We describe a procedure to estimate the parameters of univariate distributions characterizing such signals and apply it to our log air permeability data. The latter are found to be consistent with a collection of samples from tfLm with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} slightly smaller than 2, which is easily confused with a Gaussian field (characterized by constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} = 2). The irregular (spiky) nature of this signal is typical of observed fractured rock properties. We propose that distributions of earth and environmental variable be inferred jointly from measured values and their increments in a way that insures consistency between these two sets of data.
引用
收藏
页码:195 / 207
页数:12
相关论文
共 41 条
  • [1] Sub-Gaussian model of processes with heavy-tailed distributions applied to air permeabilities of fractured tuff
    Riva, Monica
    Neuman, Shlomo P.
    Guadagnini, Alberto
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (01) : 195 - 207
  • [2] SUB-GAUSSIAN ESTIMATORS OF THE MEAN OF A RANDOM MATRIX WITH HEAVY-TAILED ENTRIES
    Minsker, Stanislav
    ANNALS OF STATISTICS, 2018, 46 (06): : 2871 - 2903
  • [3] Sub-Weibull distributions: Generalizing sub-Gaussian and sub-Exponential properties to heavier tailed distributions
    Vladimirova, Mariia
    Girard, Stephane
    Hien Nguyen
    Arbel, Julyan
    STAT, 2020, 9 (01):
  • [4] The normal inverse Gaussian distribution:: A versatile model for heavy-tailed stochastic processes
    Hanssen, A
    Oigård, TA
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3985 - 3988
  • [5] Emergence of Heavy-Tailed Distributions in a Random Multiplicative Model Driven by a Gaussian Stochastic Process
    Dan Pirjol
    Journal of Statistical Physics, 2014, 154 : 781 - 806
  • [6] Emergence of Heavy-Tailed Distributions in a Random Multiplicative Model Driven by a Gaussian Stochastic Process
    Pirjol, Dan
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (03) : 781 - 806
  • [7] Heavy-tailed distributions in a stochastic gene autoregulation model
    Bokes, Pavol
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (11):
  • [8] Anomalous fluctuations of renewal-reward processes with heavy-tailed distributions
    Horii, Hiroshi
    Lefevere, Raphael
    Itami, Masato
    Nemoto, Takahiro
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [9] New scaling model for variables and increments with heavy-tailed distributions
    Riva, Monica
    Neuman, Shlomo P.
    Guadagnini, Alberto
    WATER RESOURCES RESEARCH, 2015, 51 (06) : 4623 - 4634
  • [10] Modeling and statistical analysis of non-Gaussian random fields with heavy-tailed distributions
    Nezhadhaghighi, Mohsen Ghasemi
    Nakhlband, Abbas
    PHYSICAL REVIEW E, 2017, 95 (04)