Quantizing the KdV Equation

被引:0
|
作者
A. K. Pogrebkov
机构
[1] Steklov Mathematical Institute,
[2] RAS,undefined
来源
关键词
Soliton; Hilbert Space; Quantum Case; Quantization Procedure; Fermionic Representation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quantization procedure for the Gardner–Zakharov–Faddeev and Magri brackets using the fermionic representation for the KdV field. In both cases, the corresponding Hamiltonians are sums of two well-defined operators. Each operator is bilinear and diagonal with respect to either fermion or boson (current) creation/annihilation operators. As a result, the quantization procedure needs no space cutoff and can be performed on the entire axis. In this approach, solitonic states appear in the Hilbert space, and soliton parameters become quantized. We also demonstrate that the dispersionless KdV equation is uniquely and explicitly solvable in the quantum case.
引用
收藏
页码:1586 / 1595
页数:9
相关论文
共 50 条
  • [21] SOLITONS OF THE MODIFIED KDV EQUATION
    GROSSE, H
    LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (04) : 313 - 319
  • [22] Bosonization of supersymmetric KdV equation
    Gao, Xiao Nan
    Lou, S. Y.
    PHYSICS LETTERS B, 2012, 707 (01) : 209 - 215
  • [23] MULTIPLET SOLUTIONS OF THE KDV EQUATION
    SHARIPOV, RA
    DOKLADY AKADEMII NAUK SSSR, 1987, 292 (06): : 1356 - 1359
  • [24] On a forced modified KdV equation
    Bu, C
    PHYSICS LETTERS A, 1997, 229 (04) : 221 - 227
  • [25] Penalty method for the KdV equation
    Qin, Zhen
    Temam, Roger
    APPLICABLE ANALYSIS, 2012, 91 (02) : 193 - 211
  • [26] Four Symmetries of the KdV Equation
    Alexander G. Rasin
    Jeremy Schiff
    Journal of Nonlinear Science, 2022, 32
  • [27] An explicit scheme for the KdV equation
    Wang Hui-Ping
    Wang Yu-Shun
    Hu Ying-Ying
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2335 - 2338
  • [28] KDV EQUATION ON RIEMANN SURFACES
    BONORA, L
    MATONE, M
    NUCLEAR PHYSICS B, 1989, 327 (02) : 415 - 426
  • [29] On classical solutions of the KdV equation
    Grudsky, Sergei
    Rybkin, Alexei
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (02) : 354 - 371
  • [30] Four Symmetries of the KdV Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (05)