Key words: Logistic equation, global attractivity, piecewise constant argument.;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we give a best possible condition for global attractivity of a logistic equation with piecewise constant argument ¶¶\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ y'(t)=r(t)y(t)\left\{1-\frac{y([t])}{K}\right\}, \quad t\geq 0 $\end{document}¶¶ where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ [\cdot] $\end{document} denotes the greatest integer function, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ r:[0,\infty) \to [0,\infty) $\end{document} is a continuous function and K is a positive constant.