Global attractivity for a logistic equation with piecewise constant argument

被引:0
|
作者
Hideaki Matsunaga
Tadayuki Hara
Sadahisa Sakata
机构
[1] Department of Mathematical Sciences,
[2] Osaka Prefecture University,undefined
[3] Sakai 599-8531,undefined
[4] Japan,undefined
[5] e-mail: hara@ms.osakafu-u.ac.jp,undefined
[6] Research Center for Physics and Mathematics,undefined
[7] Osaka Electro-Communication University,undefined
[8] Neyagawa 572-8530,undefined
[9] Japan,undefined
关键词
Key words: Logistic equation, global attractivity, piecewise constant argument.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a best possible condition for global attractivity of a logistic equation with piecewise constant argument ¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ y'(t)=r(t)y(t)\left\{1-\frac{y([t])}{K}\right\}, \quad t\geq 0 $\end{document}¶¶ where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ [\cdot] $\end{document} denotes the greatest integer function, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ r:[0,\infty) \to [0,\infty) $\end{document} is a continuous function and K is a positive constant.
引用
收藏
页码:45 / 52
页数:7
相关论文
共 50 条