Singular spherical maximal operators on a class of degenerate two-step nilpotent Lie groups

被引:0
|
作者
Naijia Liu
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
Mathematische Zeitschrift | 2023年 / 304卷
关键词
Singular spherical maximal operator; Degenerate two step nilpotent Lie groups; Gaussian curvature; Oscillatory integrals; 42B25; 22E30; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let G≅Rd⋉R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\cong {\mathbb {R}}^{d} \ltimes {\mathbb {R}}$$\end{document} be a finite-dimensional two-step nilpotent group with the group multiplication (x,u)·(y,v)→(x+y,u+v+xTJy)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,u)\cdot (y,v)\rightarrow (x+y,u+v+x^{T}Jy)$$\end{document} where J is a skew-symmetric matrix satisfying a degeneracy condition with 2≤rankJ<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le \textrm{rank}\, J <d$$\end{document}. Consider the maximal function defined by Mf(x,u)=supt>0|∫Σf(x-ty,u-txTJy)dμ(y)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathfrak {M}}f(x, u)=\sup _{t>0}\big |\int _{\Sigma } f(x-ty, u- t x^{T}Jy) d\mu (y)\big |, \end{aligned}$$\end{document}where Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is a smooth convex hypersurface and dμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\mu $$\end{document} is a compactly supported smooth density on Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} such that the Gaussian curvature of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is nonvanishing on suppdμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{supp}{}d\mu $$\end{document}. In this paper we prove that when d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, the maximal operator M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {M}}$$\end{document} is bounded on Lp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}(G)$$\end{document} for the range (d-1)/(d-2)<p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d-1)/(d-2)<p\le \infty $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Graphs and two-step nilpotent Lie algebras
    Mainkar, Meera G.
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 55 - 65
  • [22] Maximal operators associated to discrete subgroups of nilpotent Lie groups
    Akos Magyar
    Elias M. Stein
    Stephen Wainger
    Journal d'Analyse Mathématique, 2007, 101 : 257 - 312
  • [23] Maximal operators associated to discrete subgroups of nilpotent lie groups
    Magyar, Akos
    Stein, Elias M.
    Wainger, Stephen
    JOURNAL D ANALYSE MATHEMATIQUE, 2007, 101 (1): : 257 - 312
  • [24] SINGULAR INTEGRAL-OPERATORS ON NILPOTENT LIE-GROUPS
    GOODMAN, R
    ARKIV FOR MATEMATIK, 1980, 18 (01): : 1 - 11
  • [25] Adjoint Cohomology of Two-Step Nilpotent Lie Superalgebras
    Liu, Wende
    Yang, Yong
    Du, Xiankun
    JOURNAL OF LIE THEORY, 2021, 31 (01) : 221 - 232
  • [26] SINGULAR FOURIER INTEGRAL-OPERATORS AND REPRESENTATIONS OF NILPOTENT LIE GROUPS
    CORWIN, L
    GREENLEAF, FP
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (06) : 681 - 705
  • [27] Convolution operators on two-step nilpotent lie group (II) - Convolution operators and its test function space
    He, C.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2001, 29 (04): : 67 - 69
  • [28] Uncertainty principles on two step nilpotent Lie groups
    Ray, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (03): : 293 - 318
  • [29] Uncertainty principles on two step nilpotent Lie groups
    S. K. Ray
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 293 - 318
  • [30] The Laguerre calculus on the nilpotent Lie groups of step two
    Chang, Der-Chen
    Markina, Irina
    Wang, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1855 - 1882