Sharp Bounds for the First Eigenvalue of a Fourth-Order Steklov Problem

被引:0
|
作者
Simon Raulot
Alessandro Savo
机构
[1] UMR 6085 CNRS-Université de Rouen,Laboratoire de Mathématiques R. Salem
[2] Sapienza Università di Roma,Dipartimento SBAI, Sezione di Matematica
来源
关键词
Fourth-order Steklov problem; Eigenvalues; Harmonic functions; Lower bounds; 58J50; 35P15; 35J40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the biharmonic Steklov eigenvalue problem on a compact Riemannian manifold with smooth boundary. We give a sharp lower bound of the first eigenvalue of this problem, which depends only on the dimension, a lower bound of the Ricci curvature of the domain, a lower bound of the mean curvature of its boundary and the inner radius. The proof is obtained by estimating the isoperimetric ratio of non-negative subharmonic functions on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, which is of independent interest. We also give a comparison theorem for geodesic balls.
引用
收藏
页码:1602 / 1619
页数:17
相关论文
共 50 条