Retinal fingerprints for precision profiling of cardiovascular risk

被引:0
|
作者
Tariq E. Farrah
David J. Webb
Neeraj Dhaun
机构
[1] University of Edinburgh,University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, Queen’s Medical Research Institute
来源
Nature Reviews Cardiology | 2019年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Retinal microvascular changes are strongly linked to prevalent and incident cardiovascular disease. These changes can now be mapped with unparalleled accuracy using retinal optical coherence tomography. Novel retinal imaging, combined with the power of deep learning, might soon equip clinicians with unique and precise risk-assessment tools that enable truly individualized patient management.
引用
收藏
页码:379 / 381
页数:2
相关论文
共 50 条
  • [41] Cardiovascular risk factors and outcome in patients with retinal vein occlusion
    Di Capua, Mirko
    Coppola, Antonio
    Albisinni, Rosina
    Tufano, Antonella
    Guida, Anna
    Di Minno, Matteo Nicola Dario
    Cirillo, Ferdinando
    Loffredo, Marcello
    Cerbone, Anna Maria
    JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2010, 30 (01) : 16 - 22
  • [42] Cardiovascular risk factors and outcome in patients with retinal vein occlusion
    Mirko Di Capua
    Antonio Coppola
    Rosina Albisinni
    Antonella Tufano
    Anna Guida
    Matteo Nicola Dario Di Minno
    Ferdinando Cirillo
    Marcello Loffredo
    Anna Maria Cerbone
    Journal of Thrombosis and Thrombolysis, 2010, 30 : 16 - 22
  • [43] CARDIOVASCULAR PROFILING
    SQUIRES, RW
    BOVE, AA
    CLINICS IN SPORTS MEDICINE, 1984, 3 (01) : 11 - 29
  • [44] Retinal perfusion density can predict cardiovascular disease risk in patients with retinal vein occlusion
    Raviselvan, Munispriyan
    Preethi, B.
    Ratra, Dhanashree
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2023, 71 (02) : 379 - 384
  • [45] Quantitative retinal venular caliber and risk of cardiovascular disease in older persons - The Cardiovascular Health Study
    Wong, Tien Yin
    Kamineni, Aruna
    Klein, Ronald
    Sharrett, A. Richey
    Klein, Barbara E.
    Siscovick, David S.
    Cushman, Mary
    Duncan, Bruce B.
    ARCHIVES OF INTERNAL MEDICINE, 2006, 166 (21) : 2388 - 2394
  • [46] Machine learning in cardiovascular risk assessment: Towards a precision medicine approach
    Wang, Yifan
    Aivalioti, Evmorfia
    Stamatelopoulos, Kimon
    Zervas, Georgios
    Mortensen, Martin Bodtker
    Zeller, Marianne
    Liberale, Luca
    Di Vece, Davide
    Schweiger, Victor
    Camici, Giovanni G.
    Luescher, Thomas F.
    Kraler, Simon
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2025, 55
  • [47] The need for precision medicine in managing cardiovascular risk for men receiving ADT
    Hahn, Andrew W.
    Koutroumpakis, Efstratios
    Narayan, Vivek
    Aparicio, Ana
    PROSTATE CANCER AND PROSTATIC DISEASES, 2024,
  • [48] Reducing Cardiovascular Risk Using Genomic Information in the Era of Precision Medicine
    Natarajan, Pradeep
    O'Donnell, Christopher J.
    CIRCULATION, 2016, 133 (12) : 1155 - 1159
  • [49] Is cardiovascular risk profiling from UK Biobank retinal images using explicit deep learning estimates of traditional risk factors equivalent to actual risk measurements? A prospective cohort study design
    Qian, Yiming
    Li, Liangzhi
    Nakashima, Yuta
    Nagahara, Hajime
    Nishida, Kohji
    Kawasaki, Ryo
    BMJ OPEN, 2024, 14 (10):
  • [50] Lipidomics Profiling and Risk for Cardiovascular Disease: A Longitudinal Study in American Indians
    Zeng, Wenjie
    Miao, Guanhong
    Chen, Mingjing
    Zhang, Ying
    Umans, Jason G.
    Cole, Shelley A.
    Lee, Elisa T.
    Howard, Barbara
    Fiehn, Oliver
    Zhao, Jinying
    CIRCULATION, 2021, 144