Enhanced hydrogen adsorption by Fe3O4–graphene oxide materials

被引:0
|
作者
Seyyed Ershad Moradi
机构
[1] Islamic Azad University-Sari Branch,Young Researchers and Elite Club
来源
Applied Physics A | 2015年 / 119卷
关键词
Graphene Oxide; Hydrogen Storage; Fe3O4 Nanoparticles; Iron Oxide Nanoparticles; Hydrogen Adsorption;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, graphene oxide (GO) was prepared by hummers method from natural graphite and modified with iron oxide nanoparticles. The structural order and textural properties of the graphene-based materials were studied by TEM, XRD, TG-DTA and FT-IR. Hydrogen adsorption measurements have been carried out at 77 or 87 K, and atmospheric pressure on graphene oxide and Fe3O4–graphene oxide materials. Hydrogen adsorption at 77 K and atmospheric pressure reached values in the order of 1.7 and 2.1 wt% for graphene oxide and Fe3O4–graphene oxide materials, respectively. The hydrogen adsorption capacities of the Fe3O4–graphene oxide materials compare favorably well with those attained with high-value carbon materials. The isosteric heat of adsorption (Qst) was investigated as a function of hydrogen uptake at 77 and 87 K over the pressure range of 0 to atmospheric pressure. The isosteric heat of adsorption for magnetic GO (9.7 kJ mol−1) was found to be higher than for GO (6.1 kJ mol−1).
引用
收藏
页码:179 / 184
页数:5
相关论文
共 50 条
  • [41] Tribological Properties of Graphene-based Fe3O4 Nanocomposite Materials
    Qiao Yu-Lin
    Zhao Hai-Chao
    Zang Yan
    Zhang Qing
    JOURNAL OF INORGANIC MATERIALS, 2015, 30 (01) : 41 - 46
  • [42] Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors
    Wang, Qinghong
    Jiao, Lifang
    Du, Hongmei
    Wang, Yijing
    Yuan, Huatang
    JOURNAL OF POWER SOURCES, 2014, 245 : 101 - 106
  • [43] Graphene Oxide/Fe3O4 Magnetic Nanocomposites for Efficient Recovery of Indium
    Wang Ling-Hang
    Qiu Zhi-Hua
    Chi Li-Sheng
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2021, 40 (11) : 1423 - 1432
  • [44] Synthesis, characterization, magnetic and catalytic properties of graphene oxide/Fe3O4
    Jaleh, Babak
    Khalilipour, Azam
    Habibi, Safdar
    Niyaifar, Mohammad
    Nasrollahzadeh, Mahmoud
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (06) : 4974 - 4983
  • [45] Preparation and Characterization of Reduced Graphene Oxide–Fe3O4 Nanocomposites in Polyacrylamide
    K. H. Didehban
    S. A. Mirshokraie
    F. Mohammadi
    J. Azimvand
    Russian Journal of Physical Chemistry A, 2018, 92 : 2270 - 2276
  • [46] Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide
    Figueredo, Federico
    Garcia, Paulo T.
    Corton, Eduardo
    Coltro, Wendell K. T.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (01) : 11 - 15
  • [47] Graphene Oxide/Fe3O4 Magnetic Nanocomposites for Efficient Recovery of Indium
    王令航
    邱智华
    池利生
    Chinese Journal of Structural Chemistry, 2021, 40 (11) : 1423 - 1432
  • [48] Facile synthesis of reduced graphene oxide/Fe3O4 nanocomposite film
    Ma, Cunqing
    Yang, Kaiyu
    Wang, Lili
    Wang, Xin
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2017, 15 : S1 - S6
  • [49] Enhanced Microwave Absorption: The Composite of Fe3O4 Flakes and Reduced Graphene Oxide with Improved Interfacial Polarization
    Jiao, Shangqing
    Wu, Mingzai
    Yu, Xinxin
    Zhang, Hui
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (04)
  • [50] Rational Self-Assembly of Fe3O4 Nanostructures on Reduced Graphene Oxide for Enhanced Microwave Absorption
    Ren, Jie
    Zhang, Lingjie
    Fan, Xianping
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (09) : 5057 - 5071