首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Cones of completely bounded maps
被引:0
|
作者
:
Bojan Magajna
论文数:
0
引用数:
0
h-index:
0
机构:
University of Ljubljana,Department of Mathematics
Bojan Magajna
机构
:
[1]
University of Ljubljana,Department of Mathematics
来源
:
Positivity
|
2021年
/ 25卷
关键词
:
-algebra;
von Neumann algebra;
Completely bounded map;
Positive map;
Mapping cone;
46L07;
47L07;
46L05;
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
By analogy with the Choi matrix we associate an operator Cφ∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi }\in \mathrm{B}({\mathscr {H}})$$\end{document} to each weak* continuous A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}-bimodule map φ:B(K)→B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :\mathrm{B}({\mathscr {K}})\rightarrow \mathrm{B}({\mathscr {H}})$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {K}}$$\end{document} and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}$$\end{document} are normal Hilbert modules over a von Neumann algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {K}}$$\end{document} contains a cyclic vector for A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}. If A⊆B(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}\subseteq \mathrm{B}({\mathscr {K}})$$\end{document} has no central summands of type I (K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {K}}$$\end{document} cyclic), every normal A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}-bimodule map on B(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{B}({\mathscr {K}})$$\end{document}, which is positive on A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}^{\prime }$$\end{document}, is shown to be completely positive on Z′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {Z}}^{\prime }$$\end{document}, where A′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}^{\prime }$$\end{document} and Z′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {Z}}^{\prime }$$\end{document} are the commutant of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document} and the center Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {Z}}$$\end{document} of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {A}}$$\end{document}. We investigate cones of bimodule maps, introduce the corresponding dual cones of operators and show that in an appropriate context these notions reduce to those studied earlier by Størmer. We also consider positive maps relative to a mapping cone and positivity in operator projective tensor product of suitable operator bimodules.
引用
收藏
页码:1 / 29
页数:28
相关论文
共 50 条
[21]
Completely bounded maps into certain Hilbertian operator spaces
Pisier, G
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Pisier, G
INTERNATIONAL MATHEMATICS RESEARCH NOTICES,
2004,
2004
(74)
: 3983
-
4018
[22]
Completely bounded norms of k-positive maps
Aubrun, Guillaume
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Aubrun, Guillaume
Davidson, Kenneth R.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Davidson, Kenneth R.
Mueller-Hermes, Alexander
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Oslo, Dept Math, Oslo, Norway
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Mueller-Hermes, Alexander
Paulsen, Vern I.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Waterloo, Dept Pure Math, Inst Quantum Comp, Waterloo, ON, Canada
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Paulsen, Vern I.
Rahaman, Mizanur
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lyon, ENS Lyon, LIP, UCBL,INRIA, F-69342 Lyon 07, France
Univ Lyon 1, Inst Camille Jordan, CNRSCNRS, INRIA, Lyon, France
Rahaman, Mizanur
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES,
2024,
109
(06):
[23]
COMPLETELY BOUNDED MAPS OF C-STAR-ALGEBRAS
HURUYA, T
论文数:
0
引用数:
0
h-index:
0
机构:
NIIGATA UNIV,FAC SCI,NIIGATA 95021,JAPAN
NIIGATA UNIV,FAC SCI,NIIGATA 95021,JAPAN
HURUYA, T
TOMIYAMA, J
论文数:
0
引用数:
0
h-index:
0
机构:
NIIGATA UNIV,FAC SCI,NIIGATA 95021,JAPAN
NIIGATA UNIV,FAC SCI,NIIGATA 95021,JAPAN
TOMIYAMA, J
JOURNAL OF OPERATOR THEORY,
1983,
10
(01)
: 141
-
152
[24]
COMPLETELY BOUNDED MAPS ON C-STAR-ALGEBRAS
SUEN, CY
论文数:
0
引用数:
0
h-index:
0
SUEN, CY
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1985,
93
(01)
: 81
-
87
[25]
REPRESENTATIONS OF BANACH ALGEBRAS AS ALGEBRAS OF COMPLETELY BOUNDED MAPS
Oikhberg, Timur
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Oikhberg, Timur
MATHEMATICA SCANDINAVICA,
2009,
105
(01)
: 99
-
120
[26]
On completely bounded bimodule maps over W*-algebras
Magajna, B
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
Magajna, B
STUDIA MATHEMATICA,
2003,
154
(02)
: 137
-
164
[27]
COMPLETELY BOUNDED MAPS AND HYPO-DIRICHLET ALGEBRAS
DOUGLAS, RG
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
DOUGLAS, RG
PAULSEN, VI
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
PAULSEN, VI
ACTA SCIENTIARUM MATHEMATICARUM,
1986,
50
(1-2):
: 143
-
157
[28]
COMPLETELY BOUNDED MODULE MAPS AND THE HAAGERUP TENSOR PRODUCT
SMITH, RR
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Mathematics, Texas A and M University, College Station
SMITH, RR
JOURNAL OF FUNCTIONAL ANALYSIS,
1991,
102
(01)
: 156
-
175
[29]
Operator spaces with prescribed sets of completely bounded maps
Oikhberg, T
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Oikhberg, T
JOURNAL OF FUNCTIONAL ANALYSIS,
2005,
224
(02)
: 296
-
315
[30]
Representations of group algebras in spaces of completely bounded maps
Smith, RR
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Smith, RR
Spronk, N
论文数:
0
引用数:
0
h-index:
0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
Spronk, N
INDIANA UNIVERSITY MATHEMATICS JOURNAL,
2005,
54
(03)
: 873
-
896
←
1
2
3
4
5
→