Catalytic ozonation of phenol by ZnFe2O4/ZnNCN: performance and mechanism

被引:0
|
作者
Pengfei Yan
Yaping Ye
Mingwen Wang
机构
[1] University of Science and Technology Beijing,School of Chemistry and Biological Engineering
关键词
Catalytic ozonation; ZnFe; O; /ZnNCN; Hydroxyl radical; Phenol; Mechanism; Decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
A novel magnetic catalyst was synthesized and applied in heterogeneous catalytic ozonation process. The ZnFe2O4/ZnNCN material was synthesized by hydrothermal and high-temperature calcination method and characterized by XPS, XRD, FTIR, VSM, and SEM techniques. In the system of O3/ZnFe2O4/ZnNCN, the removal rates of phenol and chemical oxygen demand (COD) reached 93% and 43% at 60 min. Further analysis shows that ZnFe2O4/ZnNCN has a significant catalytic effect on O3, which is demonstrated by the first-order kinetic constant being 1.93 times than O3 alone. The catalyst exhibits excellent cycling stability during repeated catalytic ozonation process and can be fully recycled under an applied magnetic field. The role of hydrogen peroxide (H2O2) and surface hydroxyl groups was investigated, and a mechanism for catalytic ozonation was proposed. This work not only builds an efficient catalytic ozonation system, but also provides a potential modification strategy for spinel oxides.
引用
收藏
页码:88172 / 88181
页数:9
相关论文
共 50 条
  • [21] Controlled microwave-assisted synthesis of ZnFe2O4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride
    Moghaddam, F. Matloubi
    Doulabi, M.
    Saeidian, H.
    SCIENTIA IRANICA, 2012, 19 (06) : 1597 - 1600
  • [22] Elevated removal of di-n-butyl phthalate by catalytic ozonation over magnetic Mn-doped ferrospinel ZnFe2O4 materials: Efficiency and mechanism
    Zhao, Ying
    An, Hongze
    Dong, Guojun
    Feng, Jing
    Ren, Yueming
    Wei, Tong
    APPLIED SURFACE SCIENCE, 2020, 505
  • [23] Insight into the catalytic mechanism of γ-Fe2O3/ZnFe2O4 for hydrogen peroxide activation under visible light
    Ma, Yuan
    Wang, Qing
    Xing, Shengtao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 529 : 247 - 254
  • [24] Physical and magnetic properties of biosynthesized ZnO/Fe2O3, ZnO/ZnFe2O4, and ZnFe2O4 nanoparticles
    Noukelag, Sandrine Kamdoum
    Cummings, Franscious
    Arendse, Christopher J.
    Maaza, Malik
    RESULTS IN SURFACES AND INTERFACES, 2023, 10
  • [25] Electronic structure calculations for ZnFe2O4
    Soliman, S.
    Elfalaky, A.
    Fecher, Gerhard H.
    Felser, Claudia
    PHYSICAL REVIEW B, 2011, 83 (08):
  • [26] Magnetic properties of ZnFe2O4 nanoparticles
    Guskos, Niko
    Glenis, Spiros
    Typek, Janusz
    Zolnierkiewicz, Grzegorz
    Berczynski, Pawel
    Wardal, Kamil
    Guskos, Aleksander
    Sibera, Daniel
    Moszynski, Dariusz
    Lojkowski, Witold
    Narkiewicz, Urszula
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (02): : 470 - 477
  • [27] Magnetism of crystalline and nanostructured ZnFe2O4
    Burghart, FJ
    Potzel, W
    Kalvius, GM
    Schreier, E
    Grosse, G
    Noakes, DR
    Schäfer, W
    Kockelmann, W
    Campbell, SJ
    Kaczmarek, WA
    Martin, A
    Krause, MK
    PHYSICA B, 2000, 289 : 286 - 290
  • [28] Surface Modification of ZnFe2O4 Nanoparticles
    肖旭贤
    何琼琼
    蔡婧文
    涂怡婷
    甘露
    聂晓璐
    精细化工中间体, 2007, (03) : 51 - 53
  • [29] ZnFe2O4 antiferromagnetic structure redetermination
    Kremenovic, Aleksandar
    Antic, Bratislav
    Vulic, Predrag
    Blanusa, Jovan
    Tomic, Aleksandra
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 426 : 264 - 266
  • [30] Spin liquid state in ZnFe2O4
    Kamazawa, K
    Tsunoda, Y
    Odaka, K
    Kohn, K
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1999, 60 (8-9) : 1261 - 1264