Harnack Inequalities for Jump Processes

被引:0
|
作者
Richard F. Bass
David A. Levin
机构
[1] University of Connecticut,Department of Mathematics
来源
Potential Analysis | 2002年 / 17卷
关键词
Harnack inequality; jump processes; stable processes; Lévy systems; integral equations;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of pure jump Markov processes in Rd whose jump kernels are comparable to those of symmetric stable processes. We establish a Harnack inequality for nonnegative functions that are harmonic with respect to these processes. We also establish regularity for the solutions to certain integral equations.
引用
收藏
页码:375 / 388
页数:13
相关论文
共 50 条
  • [41] HARNACK AND MEAN VALUE INEQUALITIES ON GRAPHS
    Lin, Yong
    Song, Hongye
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1751 - 1758
  • [42] Harnack inequalities for double phase functionals
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 206 - 222
  • [43] COUPLING AND HARNACK INEQUALITIES FOR SIERPINSKI CARPETS
    BARLOW, MT
    BASS, RF
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) : 208 - 212
  • [44] Harnack inequalities for Yamabe type equations
    Bahoura, Samy Skander
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 875 - 892
  • [45] Logarithmic Harnack inequalities for homogeneous graphs
    Man, Shoudong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) : 407 - 414
  • [46] INEQUALITIES OF HARNACK AT THE FRONTIER OF EQUATIONS BY KOLMOGOROV
    Polidoro, Sergio
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2011,
  • [47] Nonlocal Harnack inequalities in the Heisenberg group
    Giampiero Palatucci
    Mirco Piccinini
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [48] BOUNDARY HARNACK INEQUALITIES FOR PARABOLIC OPERATORS
    HEURTEAUX, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 308 (13): : 401 - 404
  • [49] Harnack inequalities on manifolds with boundary and applications
    Wang, Feng-Yu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (03): : 304 - 321
  • [50] Harnack inequalities for evolving hypersurfaces on the sphere
    Bryan, Paul
    Ivaki, Mohammad N.
    Scheuer, Julian
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (05) : 1047 - 1077