Rate of Convergence for Double Rational Fourier Series

被引:0
|
作者
Khachar, Hardeepbhai J. [1 ]
Vyas, Rajendra G. [1 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Fac Sci, Dept Math, Vadodara 390002, Gujarat, India
关键词
Rational Fourier series; Double rational Fourier series; Rate of convergence; Generalized bounded variation; PARTIAL-SUMS; APPROXIMATION;
D O I
10.1007/s11785-023-01479-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We calculate the rate of convergence of the double rational Fourier series for regular, bounded, measurable, and two-variable functions. The rectangular oscillation of the two-variable function is used to quantify this rate. Additionally, we give an approximation of convergence rate of the double rational Fourier series for continuous functions with generalized bounded variation.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Norm convergence of double Fourier series on unbounded Vilenkin groups
    Gat, G.
    Goginava, U.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 201 - 216
  • [42] Convergence in measure of strong logarithmic means of double Fourier series
    U. Goginava
    L. Gogoladze
    Journal of Contemporary Mathematical Analysis, 2014, 49 : 109 - 116
  • [43] L1-convergence of complex double fourier series
    Kulwinder Kaur
    S. S. Bhatia
    Babu Ram
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2003, 113 : 355 - 363
  • [44] Convergence of double Fourier series of functions from symmetric spaces
    G. A. Akishev
    Mathematical Notes, 2007, 81 : 287 - 290
  • [45] Norm convergence of double Fourier series on unbounded Vilenkin groups
    G. Gát
    U. Goginava
    Acta Mathematica Hungarica, 2017, 152 : 201 - 216
  • [46] CONVERGENCE OF DOUBLE WALSH-FOURIER SERIES AND HARDY SPACES
    Ferenc Weisz ( Etvs L. Univrersity
    ApproximationTheoryandItsApplications, 2001, (02) : 32 - 44
  • [47] Convergence in measure of strong logarithmic means of double Fourier series
    Goginava, U.
    Gogoladze, L.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (03): : 109 - 116
  • [48] L1-convergence of complex double Fourier series
    Kaur, K
    Bhatia, SS
    Ram, B
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (04): : 355 - 363
  • [49] On sharp estimates of the convergence of double Fourier-Bessel series
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (11) : 1735 - 1740
  • [50] GENERALIZED LOCALIZATION ALMOST EVERYWHERE AND FOURIER DOUBLE SERIES CONVERGENCE
    BLOSHANSKII, IL
    DOKLADY AKADEMII NAUK SSSR, 1978, 242 (01): : 11 - 13