Extensions and Deformations of Algebras with Higher Derivations

被引:0
|
作者
Apurba Das
机构
[1] Indian Institute of Technology,Department of Mathematics and Statistics
关键词
Higher derivations; AssHDer pairs; Hochschild cohomology; Extensions; Formal deformations; 16E40; 16S80; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
Higher derivations on an associative algebra generalize higher-order derivatives. We call a tuple consisting of an algebra and a higher derivation on it by an AssHDer pair. We define cohomology for AssHDer pairs with coefficients in a representation. Next, we study central extensions of an AssHDer pair and relate them with the second cohomology group of the AssHDer pair. Finally, we consider deformations of AssHDer pairs that are governed by the cohomology with self-coefficient.
引用
收藏
页码:379 / 398
页数:19
相关论文
共 50 条
  • [41] AUTOMORPHISMS AND HIGHER DERIVATIONS OF INCIDENCE ALGEBRAS
    KOPPINEN, M
    JOURNAL OF ALGEBRA, 1995, 174 (02) : 698 - 723
  • [42] Lie higher derivations of incidence algebras
    Lizhen Chen
    Zhankui Xiao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [43] Higher extensions for gentle algebras
    Baur, Karin
    Schroll, Sibylle
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [44] DEFORMATIONS AND EXTENSIONS OF BIHOM-ALTERNATIVE ALGEBRAS
    Chtioui, Taoufik
    Mabrouk, Sami
    Makhlouf, Abdenacer
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 159 - 181
  • [45] Deformations and extensions of Lie-Yamaguti algebras
    Zhang, Tao
    Li, Juan
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11): : 2212 - 2231
  • [46] A Note on (α, β)-higher Derivations and their Extensions to Modules of Quotients
    Vas, Lia
    Papachristou, Charalampos
    RING AND MODULE THEORY, 2010, : 165 - 174
  • [47] PENCILS OF HIGHER DERIVATIONS OF ARBITRARY FIELD EXTENSIONS
    DEVENEY, JK
    MORDESON, JN
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (02) : 205 - 211
  • [48] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    ScienceChina(Mathematics), 2018, 61 (05) : 797 - 812
  • [49] Brackets with (τ, σ)-derivations and (p, q)-deformations of Witt and Virasoro algebras
    Elchinger, Olivier
    Lundengard, Karl
    Makhlouf, Abdenacer
    Silvestrov, Sergei D.
    FORUM MATHEMATICUM, 2016, 28 (04) : 657 - 673
  • [50] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    Science China Mathematics, 2018, 61 : 797 - 812