PreAugNet: improve data augmentation for industrial defect classification with small-scale training data

被引:0
|
作者
Isack Farady
Chih-Yang Lin
Ming-Ching Chang
机构
[1] Yuan Ze University,Electrical Engineering
[2] Mercu Buana University,Electrical Engineering
[3] National Central University,Mechanical Engineering
[4] University at Albany,Computer Science
来源
关键词
Data augmentation; Synthetic sample generation; CNN; Surface defect classification; Decision boundary; PreAugNet;
D O I
暂无
中图分类号
学科分类号
摘要
With the prevalence of deep learning and convolutional neural network (CNN), data augmentation is widely used for enriching training samples to gain model training improvement. Data augmentation is important when training samples are scarce. This work focuses on improving data augmentation for training an industrial steel surface defect classification network, where the performance is largely depending on the availability of high-quality training samples. It is very difficult to find a sufficiently large dataset for this application in real-world settings. When it comes to synthetic data augmentation, the performance is often degraded by incorrect class labels, and a large effort is required to generate high-quality samples. This paper introduces a novel off-line pre-augmentation network (PreAugNet) which acts as a class boundary classifier that can effectively screen the quality of the augmented samples and improve image augmentation. This PreAugNet can generate augmented samples and update decision boundaries via an independent support vector machine (SVM) classifier. New samples are automatically distributed and combined with the original data for training the target network. The experiments show that these new augmentation samples can improve classification without changing the target network architecture. The proposed method for steel surface defect inspection is evaluated on three real-world datasets: AOI steel defect dataset, MT, and NEU datasets. PreAugNet significantly increases the accuracy by 3.3% (AOI dataset), 6.25% (MT dataset) and 2.1% (NEU dataset), respectively.
引用
收藏
页码:1233 / 1246
页数:13
相关论文
共 50 条
  • [41] DATA AUGMENTATION IN TRAINING DEEP LEARNING MODELS FOR MALWARE FAMILY CLASSIFICATION
    Ding Yuxin
    Wang Guangbin
    Ma Yubin
    Ding Haoxuan
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 102 - 107
  • [42] Data Augmentation for Graph Classification
    Zhou, Jiajun
    Shen, Jie
    Xuan, Qi
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2341 - 2344
  • [43] Data Augmentation for Traffic Classification
    Wang, Chao
    Finamore, Alessandro
    Michiardi, Pietro
    Gallo, Massimo
    Rossi, Dario
    PASSIVE AND ACTIVE MEASUREMENT, PAM 2024, PT I, 2024, 14537 : 159 - 186
  • [44] Bayesian classification by data augmentation
    Reguzzoni, M
    Sansò, F
    Venuti, G
    Brivio, PA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (20) : 3961 - 3981
  • [45] Classification with Dynamic Data Augmentation
    Xu, Dejiang
    Lee, Mong Li
    Hsu, Wynne
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1434 - 1441
  • [46] Data Augmentation for Plant Classification
    Pawara, Pornntiwa
    Okafor, Emmanuel
    Schomaker, Lambert
    Wiering, Marco
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 615 - 626
  • [47] Efficient Training for Automatic Defect Classification by Image Augmentation
    Kondo, Naoaki
    Harada, Minoru
    Takagi, Yuji
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 226 - 233
  • [48] On Data Augmentation for GAN Training
    Tran, Ngoc-Trung
    Tran, Viet-Hung
    Nguyen, Ngoc-Bao
    Nguyen, Trung-Kien
    Cheung, Ngai-Man
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1882 - 1897
  • [49] Defect Classification of Weld Metallographic Structure Based on Data Augmentation of Poisson Fusion
    Bai X.
    Gong S.
    Li X.
    Xu B.
    Yang X.
    Wang M.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (10): : 1216 - 1328
  • [50] Synthetic data augmentation for surface defect detection and classification using deep learning
    Jain, Saksham
    Seth, Gautam
    Paruthi, Arpit
    Soni, Umang
    Kumar, Girish
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (04) : 1007 - 1020