On the contraction-proximal point algorithms with multi-parameters

被引:0
|
作者
Fenghui Wang
Huanhuan Cui
机构
[1] Luoyang Normal University,Department of Mathematics
来源
关键词
Maximal monotone operator; Proximal point algorithm; Firmly nonexpansive operator; 47J20; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the contraction-proximal point algorithm: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{n+1}=\alpha_nu+\lambda_nx_n+\gamma_nJ_{\beta_n}x_n,}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J_{\beta_n}}$$\end{document} denotes the resolvent of a monotone operator A. Under the assumption that limn αn = 0, ∑n αn = ∞, lim infn βn > 0, and lim infn γn > 0, we prove the strong convergence of the iterates as well as its inexact version. As a result we improve and recover some recent results by Boikanyo and Morosanu.
引用
收藏
页码:485 / 491
页数:6
相关论文
共 50 条
  • [1] On the contraction-proximal point algorithms with multi-parameters
    Wang, Fenghui
    Cui, Huanhuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) : 485 - 491
  • [2] On relaxed and contraction-proximal point algorithms in hilbert spaces
    Wang, Shuyu
    Wang, Fenghui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [3] On relaxed and contraction-proximal point algorithms in hilbert spaces
    Shuyu Wang
    Fenghui Wang
    Journal of Inequalities and Applications, 2011
  • [4] Metastability of the proximal point algorithm with multi-parameters
    Dinis, Bruno
    Pinto, Pedro
    PORTUGALIAE MATHEMATICA, 2020, 77 (3-4) : 345 - 381
  • [5] Quantitative Results on the Multi-Parameters Proximal Point Algorithm
    Dinis, Bruno
    Pinto, Pedro
    JOURNAL OF CONVEX ANALYSIS, 2021, 28 (03) : 729 - 750
  • [6] The contraction-proximal point algorithm with square-summable errors
    Tian, Changan
    Wang, Fenghui
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [7] A connection between Chidume iteration and the contraction-proximal point algorithm
    Moudafi, Abdellatif
    AFRIKA MATEMATIKA, 2015, 26 (1-2) : 127 - 130
  • [8] The contraction-proximal point algorithm with square-summable errors
    Changan Tian
    Fenghui Wang
    Fixed Point Theory and Applications, 2013
  • [9] Convergence of the generalized contraction-proximal point algorithm in a Hilbert space
    Wang, Fenghui
    Cui, Huanhuan
    OPTIMIZATION, 2015, 64 (04) : 709 - 715
  • [10] Convergence of over-relaxed contraction-proximal point algorithm in Hilbert spaces
    Cui, Huanhuan
    Ceng, Luchuan
    OPTIMIZATION, 2017, 66 (05) : 793 - 809