We study deformations of cluster algebras with several quantum parameters, called toroidal cluster algebras, which naturally appear in the study of Grothendieck rings of representations of quantum affine algebras. In this context, we construct toroidal Grothendieck rings and we establish these are flat deformations of Grothendieck rings. We prove that for a family of monoidal categories C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathscr {C}}_1$$\end{document} of simply-laced quantum affine algebras categorifying finite-type cluster algebras, the toroidal Grothendieck ring has a natural structure of a toroidal cluster algebra.