The isometric immersion of two-dimensional Riemannian manifolds or surfaces with negative Gauss curvature into the three-dimensional Euclidean space is studied in this paper. The global weak solutions to the Gauss-Codazzi equations with large data in L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^{\infty}}$$\end{document} are obtained through the vanishing viscosity method and the compensated compactness framework. The L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^{\infty}}$$\end{document} uniform estimate and H−1 compactness are established through a transformation of state variables and construction of proper invariant regions for two types of given metrics including the catenoid type and the helicoid type. The global weak solutions in L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^{\infty}}$$\end{document} to the Gauss-Codazzi equations yield the C1,1 isometric immersions of surfaces with the given metrics.