Isometric Immersions of Surfaces with Two Classes of Metrics and Negative Gauss Curvature

被引:0
|
作者
Wentao Cao
Feimin Huang
Dehua Wang
机构
[1] AMSS,Institute of Applied Mathematics
[2] CAS,College of Mathematics and Computer Science
[3] Hunan Normal University,Department of Mathematics
[4] University of Pittsburgh,undefined
关键词
Weak Solution; Riemannian Manifold; Invariant Region; Isometric Immersion; Isometric Embedding;
D O I
暂无
中图分类号
学科分类号
摘要
The isometric immersion of two-dimensional Riemannian manifolds or surfaces with negative Gauss curvature into the three-dimensional Euclidean space is studied in this paper. The global weak solutions to the Gauss-Codazzi equations with large data in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document} are obtained through the vanishing viscosity method and the compensated compactness framework. The L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document} uniform estimate and H−1 compactness are established through a transformation of state variables and construction of proper invariant regions for two types of given metrics including the catenoid type and the helicoid type. The global weak solutions in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{\infty}}$$\end{document} to the Gauss-Codazzi equations yield the C1,1 isometric immersions of surfaces with the given metrics.
引用
收藏
页码:1431 / 1457
页数:26
相关论文
共 50 条