The TDNNS method for Reissner–Mindlin plates

被引:0
|
作者
Astrid S. Pechstein
Joachim Schöberl
机构
[1] Johannes Kepler University Linz,Institute of Technical Mechanics
[2] Vienna University of Technology,Institute for Analysis and Scientific Computing
来源
Numerische Mathematik | 2017年 / 137卷
关键词
65N30; 74K20;
D O I
暂无
中图分类号
学科分类号
摘要
A new family of locking-free finite elements for shear deformable Reissner–Mindlin plates is presented. The elements are based on the “tangential-displacement normal-normal-stress” formulation of elasticity. In this formulation, the bending moments are treated as separate unknowns. The degrees of freedom for the plate element are the nodal values of the deflection, tangential components of the rotations and normal–normal components of the bending strain. Contrary to other plate bending elements, no special treatment for the shear term such as reduced integration is necessary. The elements attain an optimal order of convergence.
引用
收藏
页码:713 / 740
页数:27
相关论文
共 50 条
  • [1] The TDNNS method for Reissner-Mindlin plates
    Pechstein, Astrid S.
    Schoeberl, Joachim
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (03) : 713 - 740
  • [2] A MULTIGRID METHOD FOR REISSNER-MINDLIN PLATES
    PEISKER, P
    [J]. NUMERISCHE MATHEMATIK, 1991, 59 (05) : 511 - 528
  • [3] A FINITE ELEMENT METHOD FOR REISSNER-MINDLIN PLATES
    Duan, Huoyuan
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 701 - 733
  • [4] Local integral equation method for viscoelastic Reissner–Mindlin plates
    J. Sladek
    V. Sladek
    Ch. Zhang
    [J]. Computational Mechanics, 2008, 41 : 759 - 768
  • [5] Adaptive mixed finite element method for Reissner-Mindlin plates
    Weinberg, K
    Carstensen, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S559 - S560
  • [6] Local integral equation method for viscoelastic Reissner-Mindlin plates
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    [J]. COMPUTATIONAL MECHANICS, 2008, 41 (06) : 759 - 768
  • [7] A DISCONTINUOUS PETROV-GALERKIN METHOD FOR REISSNER-MINDLIN PLATES
    Fuhrer, Thomas
    Heuer, Norbert
    Niemi, Antti H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 995 - 1017
  • [8] Analysis of annular Reissner/Mindlin plates using differential quadrature method
    Han, JB
    Liew, KM
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1998, 40 (07) : 651 - 661
  • [9] On the micromechanics theory of Reissner-Mindlin plates
    S. Li
    [J]. Acta Mechanica, 2000, 142 : 47 - 99
  • [10] On the micromechanics theory of Reissner-Mindlin plates
    Li, S
    [J]. ACTA MECHANICA, 2000, 142 (1-4) : 47 - 99