A DISCONTINUOUS PETROV-GALERKIN METHOD FOR REISSNER-MINDLIN PLATES

被引:0
|
作者
Fuhrer, Thomas [1 ]
Heuer, Norbert [1 ]
Niemi, Antti H. [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Univ Oulu, Fac Technol, Civil Engn Res Unit, Pentti Kaiteran Katu 1, Oulu 90570, Finland
关键词
DPG method; plate bending; Reissner-Mindlin model; locking; FINITE-ELEMENT-METHOD; LEAST-SQUARES; DPG METHODS;
D O I
10.1137/22M1498838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model. Our method is based on a variational formulation that utilizes a Helmholtz decomposition of the shear force. It produces approximations of the primitive variables and the bending moments. For any canonical selection of boundary conditions the method converges quasi-optimally. In the case of hard-clamped convex plates, we prove that the lowest-order scheme is locking free. Several numerical experiments confirm our results.
引用
下载
收藏
页码:995 / 1017
页数:23
相关论文
共 50 条