Discontinuous Galerkin with Weakly Over-Penalized Techniques for Reissner-Mindlin Plates

被引:7
|
作者
Boesing, Paulo Rafael [1 ]
Carstensen, Carsten [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, BR-88040900 Florianopolis, SC, Brazil
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
Reissner-Mindlin; Discontinuous Galerkin; A priori error estimates; A posteriori error estimates; POSTERIORI ERROR ANALYSIS; FINITE-ELEMENT METHODS; INTERIOR PENALTY METHOD; A-PRIORI; BIHARMONIC EQUATION; MITC ELEMENTS; MODEL; FAMILY;
D O I
10.1007/s10915-014-9936-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we introduce a new locking-free completely discontinuous formulation for Reissner-Mindlin plates that combines the discontinuous Galerkin methods with weakly over-penalized techniques. We establish a new discrete version of Helmholtz decomposition and some important residual estimates. Combining the residual estimates with enriching operators we derive an optimal a priori error estimate in the energy norm. We obtain robust a posteriori error estimators and prove their reliability and efficiency.
引用
收藏
页码:401 / 424
页数:24
相关论文
共 50 条